Publications by authors named "David A Hanauer"

Background: Caregivers are essential in supporting cancer patients, especially those undergoing hematopoietic cell transplantation (HCT). While traditional interventions have been beneficial for improving health-related quality of life (HRQOL), they typically require significant time and staff resources. To address this, we developed the Roadmap mHealth app, which incorporates resilience-building features based on positive psychology.

View Article and Find Full Text PDF

This study evaluated the readability of ClinicalTrials.gov trial information using traditional readability measures (TRMs) and compared it to summaries generated by large language models (LLMs), specifically ChatGPT and a fine-tuned BART-Large-CNN (FBLC). The study involved: 1) assessing required reading levels (RRL) with TRMs, 2) generating sample LLM-based summaries, and 3) evaluating summary quality based on scores provided by two independent reviewers.

View Article and Find Full Text PDF

Background: The mental health crisis among college students intensified amid the COVID-19 pandemic, suggesting an urgent need for innovative solutions to support them. Previous efforts to address mental health concerns have been constrained, often due to the underuse or shortage of services. Mobile health (mHealth) technology holds significant potential for providing resilience-building support and enhancing access to mental health care.

View Article and Find Full Text PDF

Background: Patient notes contain substantial information but are difficult for computers to analyse due to their unstructured format. Large-language models (LLMs), such as Generative Pre-trained Transformer 4 (GPT-4), have changed our ability to process text, but we do not know how effectively they handle medical notes. We aimed to assess the ability of GPT-4 to answer predefined questions after reading medical notes in three different languages.

View Article and Find Full Text PDF

Background: Hematopoietic stem cell transplantation (HCT) is a potentially life-saving therapy for individuals with blood diseases, but involves a challenging recovery process that requires dedicated caregivers. The complex interplay between emotional distress, care partner (or unpaid caregiver) burden, and treatment outcomes necessitates comprehensive physiological and psychological measurements to fully understand these dynamics.

Findings: We collected longitudinal data from 166 HCT caregiver-patient dyads over 120 days post-transplant as part of a randomized controlled trial ( NCT04094844 ).

View Article and Find Full Text PDF

Background: A wealth of clinically relevant information is only obtainable within unstructured clinical narratives, leading to great interest in clinical natural language processing (NLP). While a multitude of approaches to NLP exist, current algorithm development approaches have limitations that can slow the development process. These limitations are exacerbated when the task is emergent, as is the case currently for NLP extraction of signs and symptoms of COVID-19 and postacute sequelae of SARS-CoV-2 infection (PASC).

View Article and Find Full Text PDF

Few studies examining the patient outcomes of concurrent neurological manifestations during acute COVID-19 leveraged multinational cohorts of adults and children or distinguished between central and peripheral nervous system (CNS vs. PNS) involvement. Using a federated multinational network in which local clinicians and informatics experts curated the electronic health records data, we evaluated the risk of prolonged hospitalization and mortality in hospitalized COVID-19 patients from 21 healthcare systems across 7 countries.

View Article and Find Full Text PDF

Objectives: Vaccination reduces the risk of acute coronavirus disease 2019 (COVID-19) in children, but it is less clear whether it protects against long COVID. We estimated vaccine effectiveness (VE) against long COVID in children aged 5 to 17 years.

Methods: This retrospective cohort study used data from 17 health systems in the RECOVER PCORnet electronic health record program for visits after vaccine availability.

View Article and Find Full Text PDF

Objective: Vaccination reduces the risk of acute COVID-19 in children, but it is less clear whether it protects against long COVID. We estimated vaccine effectiveness (VE) against long COVID in children aged 5-17 years.

Methods: This retrospective cohort study used data from 17 health systems in the RECOVER PCORnet electronic health record (EHR) Program for visits between vaccine availability, and October 29, 2022.

View Article and Find Full Text PDF

Background: Multisystem inflammatory syndrome in children (MIS-C) is a severe complication of SARS-CoV-2 infection. It remains unclear how MIS-C phenotypes vary across SARS-CoV-2 variants. We aimed to investigate clinical characteristics and outcomes of MIS-C across SARS-CoV-2 eras.

View Article and Find Full Text PDF

Free text forms of clinical documentation stored in electronic health records contain a trove of data for researchers and clinicians alike. However, often these data are challenging to use and not easily accessible. EMERSE, a clinical documentation search and data abstraction tool developed by the University of Michigan, helps users in the task of searching through free text notes in clinical documentation.

View Article and Find Full Text PDF

Background: The Roadmap mobile health (mHealth) app was developed to provide health-related quality of life (HRQOL) support for family caregivers of patients with cancer.

Methods: Eligibility included: family caregivers (age ≥18 years) who self-reported as the primary caregiver of their pediatric patient with cancer; patients (age ≥5 years) who were receiving cancer care at the University of Michigan. Feasibility was calculated as the percentage of caregivers who logged into and engaged with it at least twice weekly for at least 50% of the 120-day study duration.

View Article and Find Full Text PDF

Background: In electronic health records, patterns of missing laboratory test results could capture patients' course of disease as well as ​​reflect clinician's concerns or worries for possible conditions. These patterns are often understudied and overlooked. This study aims to identify informative patterns of missingness among laboratory data collected across 15 healthcare system sites in three countries for COVID-19 inpatients.

View Article and Find Full Text PDF

Purpose: In young adults (18 to 49 years old), investigation of the acute respiratory distress syndrome (ARDS) after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been limited. We evaluated the risk factors and outcomes of ARDS following infection with SARS-CoV-2 in a young adult population.

Methods: A retrospective cohort study was conducted between January 1st, 2020 and February 28th, 2021 using patient-level electronic health records (EHR), across 241 United States hospitals and 43 European hospitals participating in the Consortium for Clinical Characterization of COVID-19 by EHR (4CE).

View Article and Find Full Text PDF

Importance: The COVID-19 pandemic has been associated with an increase in mental health diagnoses among adolescents, though the extent of the increase, particularly for severe cases requiring hospitalization, has not been well characterized. Large-scale federated informatics approaches provide the ability to efficiently and securely query health care data sets to assess and monitor hospitalization patterns for mental health conditions among adolescents.

Objective: To estimate changes in the proportion of hospitalizations associated with mental health conditions among adolescents following onset of the COVID-19 pandemic.

View Article and Find Full Text PDF

Background: While acute kidney injury (AKI) is a common complication in COVID-19, data on post-AKI kidney function recovery and the clinical factors associated with poor kidney function recovery is lacking.

Methods: A retrospective multi-centre observational cohort study comprising 12,891 hospitalized patients aged 18 years or older with a diagnosis of SARS-CoV-2 infection confirmed by polymerase chain reaction from 1 January 2020 to 10 September 2020, and with at least one serum creatinine value 1-365 days prior to admission. Mortality and serum creatinine values were obtained up to 10 September 2021.

View Article and Find Full Text PDF

Objective: For multi-center heterogeneous Real-World Data (RWD) with time-to-event outcomes and high-dimensional features, we propose the SurvMaximin algorithm to estimate Cox model feature coefficients for a target population by borrowing summary information from a set of health care centers without sharing patient-level information.

Materials And Methods: For each of the centers from which we want to borrow information to improve the prediction performance for the target population, a penalized Cox model is fitted to estimate feature coefficients for the center. Using estimated feature coefficients and the covariance matrix of the target population, we then obtain a SurvMaximin estimated set of feature coefficients for the target population.

View Article and Find Full Text PDF

The risk profiles of post-acute sequelae of COVID-19 (PASC) have not been well characterized in multi-national settings with appropriate controls. We leveraged electronic health record (EHR) data from 277 international hospitals representing 414,602 patients with COVID-19, 2.3 million control patients without COVID-19 in the inpatient and outpatient settings, and over 221 million diagnosis codes to systematically identify new-onset conditions enriched among patients with COVID-19 during the post-acute period.

View Article and Find Full Text PDF

Objective: To assess changes in international mortality rates and laboratory recovery rates during hospitalisation for patients hospitalised with SARS-CoV-2 between the first wave (1 March to 30 June 2020) and the second wave (1 July 2020 to 31 January 2021) of the COVID-19 pandemic.

Design, Setting And Participants: This is a retrospective cohort study of 83 178 hospitalised patients admitted between 7 days before or 14 days after PCR-confirmed SARS-CoV-2 infection within the Consortium for Clinical Characterization of COVID-19 by Electronic Health Record, an international multihealthcare system collaborative of 288 hospitals in the USA and Europe. The laboratory recovery rates and mortality rates over time were compared between the two waves of the pandemic.

View Article and Find Full Text PDF

Given the growing number of prediction algorithms developed to predict COVID-19 mortality, we evaluated the transportability of a mortality prediction algorithm using a multi-national network of healthcare systems. We predicted COVID-19 mortality using baseline commonly measured laboratory values and standard demographic and clinical covariates across healthcare systems, countries, and continents. Specifically, we trained a Cox regression model with nine measured laboratory test values, standard demographics at admission, and comorbidity burden pre-admission.

View Article and Find Full Text PDF

Acute COVID-19, caused by SARS-CoV-2, is characterized by diverse clinical presentations, ranging from asymptomatic infection to fatal respiratory failure, and often associated with varied longer-term sequelae. Over the past 18 months, it has become apparent that inappropriate immune responses contribute to the pathogenesis of severe COVID-19. Researchers working at the intersection of COVID-19 and autoimmunity recently gathered at an American Autoimmune Related Diseases Association Noel R.

View Article and Find Full Text PDF

Objective: In response to COVID-19, the informatics community united to aggregate as much clinical data as possible to characterize this new disease and reduce its impact through collaborative analytics. The National COVID Cohort Collaborative (N3C) is now the largest publicly available HIPAA limited dataset in US history with over 6.4 million patients and is a testament to a partnership of over 100 organizations.

View Article and Find Full Text PDF

Background: Many countries have experienced 2 predominant waves of COVID-19-related hospitalizations. Comparing the clinical trajectories of patients hospitalized in separate waves of the pandemic enables further understanding of the evolving epidemiology, pathophysiology, and health care dynamics of the COVID-19 pandemic.

Objective: In this retrospective cohort study, we analyzed electronic health record (EHR) data from patients with SARS-CoV-2 infections hospitalized in participating health care systems representing 315 hospitals across 6 countries.

View Article and Find Full Text PDF