DNA origami information storage is a promising alternative to silicon-based data storage, offering a secure molecular cryptography technique that conceals information within arbitrarily folded DNA origami nanostructures. Routing, sliding, and interlacing staple strands lead to the creation of a large 700-bit key size. The realization of practical DNA data storage requires high information density, robust security, and accurate and rapid information retrieval.
View Article and Find Full Text PDFDeveloping materials that can more efficiently and cheaply capture carbon dioxide from ambient atmospheric conditions is essential for improving negative emission technologies. This study builds on the promising moisture-swing modality for direct air capture of carbon dioxide by investigating the use of several new anions─orthosilicate, borate, pyrophosphate, tripolyphosphate, and dibasic phosphate─that when introduced into ion-exchange resins allow for the cyclable capture of CO under dry conditions and its release under wet conditions. These ions, as well as many others that failed to show moisture-swing performance, are tested and directly compared thermodynamically and kinetically to understand their differences.
View Article and Find Full Text PDF