Identifying functionally important cell states and structure within heterogeneous tumors remains a significant biological and computational challenge. Current clustering or trajectory-based models are ill-equipped to address the notion that cancer cells reside along a phenotypic continuum. We present Archetypal Analysis network (AAnet), a neural network that learns archetypal states within a phenotypic continuum in single-cell data.
View Article and Find Full Text PDFStandard immunofluorescence imaging captures just ~4 molecular markers (4-plex) per cell, limiting dissection of complex biology. Inspired by multimodal omics-based data integration approaches, we propose an Extensible Immunofluorescence (ExIF) framework that transforms carefully designed but easily produced panels of 4-plex immunofluorescence into a unified dataset with theoretically unlimited marker plexity, using generative deep learning-based virtual labelling. ExIF enables integrated analyses of complex cell biology, exemplified here through interrogation of the epithelial-mesenchymal transition (EMT), driving significant improvements in downstream quantitative analyses usually reserved for omics data, including: classification of cell phenotypes; manifold learning of cell phenotype heterogeneity; and pseudotemporal inference of molecular marker dynamics.
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT) plays important roles in tumour progression and is orchestrated by dynamic changes in gene expression. While it is well established that post-transcriptional regulation plays a significant role in EMT, the extent of alternative polyadenylation (APA) during EMT has not yet been explored. Using 3' end anchored RNA sequencing, we mapped the alternative polyadenylation (APA) landscape following Transforming Growth Factor (TGF)-β-mediated induction of EMT in human mammary epithelial cells and found APA generally causes 3'UTR lengthening during this cell state transition.
View Article and Find Full Text PDFThe RNA-binding protein Quaking (QKI) has widespread effects on mRNA regulation including alternative splicing, stability, translation, and localization of target mRNAs. Recently, QKI was found to be induced during epithelial-mesenchymal transition (EMT), where it promotes a mesenchymal alternative splicing signature that contributes to the mesenchymal phenotype. QKI is itself alternatively spliced to produce three major isoforms, QKI-5, QKI-6, and QKI-7.
View Article and Find Full Text PDFWiley Interdiscip Rev RNA
November 2022
The RNA-binding protein Quaking (QKI) has emerged as a potent regulator of cellular differentiation in developmental and pathological processes. The QKI gene is itself alternatively spliced to produce three major isoforms, QKI-5, QKI-6, and QKI-7, that possess very distinct functions. Here, we highlight roles of the different QKI isoforms in neuronal, vascular, muscle, and monocyte cell differentiation, and during epithelial-mesenchymal transition in cancer progression.
View Article and Find Full Text PDFMembers of the miR-200 family are critical gatekeepers of the epithelial state, restraining expression of pro-mesenchymal genes that drive epithelial-mesenchymal transition (EMT) and contribute to metastatic cancer progression. Here, we show that miR-200c and another epithelial-enriched miRNA, miR-375, exert widespread control of alternative splicing in cancer cells by suppressing the RNA-binding protein Quaking (QKI). During EMT, QKI-5 directly binds to and regulates hundreds of alternative splicing targets and exerts pleiotropic effects, such as increasing cell migration and invasion and restraining tumour growth, without appreciably affecting mRNA levels.
View Article and Find Full Text PDFSemin Cell Dev Biol
March 2018
Interconversions between epithelial and mesenchymal states, often referred to as epithelial mesenchymal transition (EMT) and its reverse MET, play important roles in embryonic development and are recapitulated in various adult pathologies including cancer progression. These conversions are regulated by complex transcriptional and post-transcriptional mechanisms including programs of alternative splicing which are orchestrated by specific splicing factors. This review will focus on the latest developments in our understanding of the splicing factors regulating epithelial mesenchymal plasticity associated with cancer progression and the induction of pluripotency, including potential roles for circular RNAs (circRNAs) which have been recently implicated in these processes.
View Article and Find Full Text PDF