Publications by authors named "Daniel G Gavin"

Amazonian Dark Earths (ADEs) are unusually fertile soils characterised by elevated concentrations of microscopic charcoal particles, which confer their distinctive colouration. Frequent occurrences of pre-Columbian artefacts at ADE sites led to their ubiquitous classification as Anthrosols (soils of anthropic origin). However, it remains unclear how indigenous peoples created areas of high fertility in one of the most nutrient-impoverished environments on Earth.

View Article and Find Full Text PDF

While wildland fire is globally most common at the savannah-grassland ecotone, there is little evidence of fire in coastal temperate rainforests. We reconstructed fire activity with a 700-year fire history derived from fire scars and stand establishment from 30 sites in a very wet (up to 4000 mm annual precipitation) temperate rainforest in coastal British Columbia, Canada. Drought and warmer temperatures in the year prior were positively associated with fire events though there was little coherence of climate indices on the years of fires.

View Article and Find Full Text PDF

Understanding climatic influences on the rates and mechanisms of landscape erosion is an unresolved problem in Earth science that is important for quantifying soil formation rates, sediment and solute fluxes to oceans, and atmospheric CO2 regulation by silicate weathering. Glaciated landscapes record the erosional legacy of glacial intervals through moraine deposits and U-shaped valleys, whereas more widespread unglaciated hillslopes and rivers lack obvious climate signatures, hampering mechanistic theory for how climate sets fluxes and form. Today, periglacial processes in high-elevation settings promote vigorous bedrock-to-regolith conversion and regolith transport, but the extent to which frost processes shaped vast swaths of low- to moderate-elevation terrain during past climate regimes is not well established.

View Article and Find Full Text PDF

Insect outbreaks are often assumed to increase the severity or probability of fire occurrence through increased fuel availability, while fires may in turn alter susceptibility of forests to subsequent insect outbreaks through changes in the spatial distribution of suitable host trees. However, little is actually known about the potential synergisms between these natural disturbances. Assessing inter-disturbance synergism is challenging due to the short length of historical records and the confounding influences of land use and climate changes on natural disturbance dynamics.

View Article and Find Full Text PDF
Article Synopsis
  • Climate refugia are essential areas where species survive adverse climate conditions, protecting biodiversity during historical climate shifts in the Quaternary period.
  • To better understand these refugia, researchers need to combine fossil records, species distribution models, and phylogeographic surveys to trace species movements in and out of these areas.
  • Case studies on species like European beech and Douglas-fir demonstrate how integrating these approaches can reveal complex species histories and aid in identifying modern refugia critical for conservation efforts.
View Article and Find Full Text PDF

The opportunity to reflect broadly on the accomplishments, prospects, and reach of a field may present itself relatively infrequently. Each biennial meeting of the International Biogeography Society showcases ideas solicited and developed largely during the preceding year, by individuals or teams from across the breadth of the discipline. Here, we highlight challenges, developments, and opportunities in biogeography from that biennial synthesis.

View Article and Find Full Text PDF

Understanding the causes and consequences of wildfires in forests of the western United States requires integrated information about fire, climate changes, and human activity on multiple temporal scales. We use sedimentary charcoal accumulation rates to construct long-term variations in fire during the past 3,000 y in the American West and compare this record to independent fire-history data from historical records and fire scars. There has been a slight decline in burning over the past 3,000 y, with the lowest levels attained during the 20th century and during the Little Ice Age (LIA, ca.

View Article and Find Full Text PDF

Detecting latitudinal range shifts of forest trees in response to recent climate change is difficult because of slow demographic rates and limited dispersal but may be facilitated by spatially compressed climatic zones along elevation gradients in montane environments. We resurveyed forest plots established in 1964 along elevation transects in the Green Mountains (Vermont) to examine whether a shift had occurred in the location of the northern hardwood-boreal forest ecotone (NBE) from 1964 to 2004. We found a 19% increase in dominance of northern hardwoods from 70% in 1964 to 89% in 2004 in the lower half of the NBE.

View Article and Find Full Text PDF

Forest fire occurrence is affected by multiple controls that operate at local to regional scales. At the spatial scale of forest stands, regional climatic controls may be obscured by local controls (e.g.

View Article and Find Full Text PDF