Neuropsychiatric genome-wide association studies (GWASs), including those for autism spectrum disorder and schizophrenia, show strong enrichment for regulatory elements in the developing brain. However, prioritizing risk genes and mechanisms is challenging without a unified regulatory atlas. Across 672 diverse developing human brains, we identified 15,752 genes harboring gene, isoform, and/or splicing quantitative trait loci, mapping 3739 to cellular contexts.
View Article and Find Full Text PDFFew neuropsychiatric disorders have replicable biomarkers, prompting high-resolution and large-scale molecular studies. However, we still lack consensus on a more foundational question: whether quantitative shifts in cell types-the functional unit of life-contribute to neuropsychiatric disorders. Leveraging advances in human brain single-cell methylomics, we deconvolve seven major cell types using bulk DNA methylation profiling across 1270 postmortem brains, including from individuals diagnosed with Alzheimer's disease, schizophrenia, and autism.
View Article and Find Full Text PDFMethods integrating genetics with transcriptomic reference panels prioritize risk genes and mechanisms at only a fraction of trait-associated genetic loci, due in part to an overreliance on total gene expression as a molecular outcome measure. This challenge is particularly relevant for the brain, in which extensive splicing generates multiple distinct transcript-isoforms per gene. Due to complex correlation structures, isoform-level modeling from cis-window variants requires methodological innovation.
View Article and Find Full Text PDFGenomic regulatory elements active in the developing human brain are notably enriched in genetic risk for neuropsychiatric disorders, including autism spectrum disorder (ASD), schizophrenia, and bipolar disorder. However, prioritizing the specific risk genes and candidate molecular mechanisms underlying these genetic enrichments has been hindered by the lack of a single unified large-scale gene regulatory atlas of human brain development. Here, we uniformly process and systematically characterize gene, isoform, and splicing quantitative trait loci (xQTLs) in 672 fetal brain samples from unique subjects across multiple ancestral populations.
View Article and Find Full Text PDFSummary: With the continued deluge of results from genome-wide association and functional genomic studies, it has become increasingly imperative to quickly combine and visualize different layers of genetic and genomic data within a given locus to facilitate exploratory and integrative data analyses. While several tools have been developed to visualize locus-level genetic results, the limited speed, scalability and flexibility of current approaches remain a significant bottleneck. Here, we present a Julia package for high-performance genetics and genomics-related data visualization that enables fast, simultaneous plotting of hundreds of association results along with multiple relevant genomic annotations.
View Article and Find Full Text PDF