Full evaporative vacuum extraction (FEVE) was developed in this work for analysis of a broad range of semivolatile organic compounds (SVOCs) in drinking water and surface water. Sorbent pens are used in a two-stage process that first evaporates the sample matrix through sorbent beds under vacuum to recover the lighter SVOCs, followed by the application of a higher temperature and stronger vacuum to the sample vial to recover the remaining heavier SVOCs once the matrix has evaporated. After extraction, the sorbent pens are desorbed into a GC-MS using a uniquely designed "splitless" delivery system to maximize sensitivity.
View Article and Find Full Text PDFVolatile organic compounds (VOCs) from biological samples have unknown origins. VOCs may originate from the host or different organisms from within the host's microbial community. To disentangle the origin of microbial VOCs, volatile headspace analysis of bacterial mono- and co-cultures of Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii, and stable isotope probing in biological samples of feces, saliva, sewage, and sputum were performed.
View Article and Find Full Text PDFVacuum-assisted sorbent extraction (VASE) has been applied in combination with gas chromatography-mass spectrometry for the determination of UV filters in water samples. VASE is a variant of headspace extraction which was developed in conjunction with the sorbent pen (SP) technology. This technique combines the advantages of both stir-bar assisted extraction and headspace solid-phase microextraction.
View Article and Find Full Text PDFA canister-based 1 week sampling method using a mechanical flow controller and a 6 L fused-silica-lined canister was evaluated for the long-term measurement of 47 VOCs in ambient air at pptv (volume/volume) to ppbv levels by use of a three-stage preconcentation method followed by GC-MS analysis. The GC conditions were initially optimized for complete separations of several pptv-level VOCs (e.g.
View Article and Find Full Text PDFFused-silica-lined (FSL) canisters and SUMMA polished (SUMMA) canisters were compared for the recoveries and the stabilities of 58 volatile organic compounds (VOCs) at low ppbv (volume/volume) levels under various humidified conditions using a three-stage preconcentration method followed by GC-MS analysis. The target VOCs included non-polar VOCs (e.g.
View Article and Find Full Text PDF