Our knowledge of the brain processes that govern vision is largely derived from studying primates, whose hierarchically organized visual system inspired the architecture of deep neural networks. This raises questions about the universality of such hierarchical structures. Here we examined the large-scale functional organization for vision in one of the closest living relatives to primates, the tree shrew.
View Article and Find Full Text PDFHigh-density silicon probes have transformed neuroscience by enabling large-scale neural recordings at single-cell resolution. However, existing technologies have provided limited functionality in nonhuman primates (NHPs) such as macaques. In the present report, we describe the design, fabrication and performance of Neuropixels 1.
View Article and Find Full Text PDFA minimally invasive "continuous nicotine monitor" (CNM) would resolve the dynamic nicotine concentration, [nicotine]t, faced by high-sensitivity nicotinic acetylcholine receptors (nAChRs) during and after nicotine intake by individual subjects. Motivations: "Know the potential enemy at an individual level." Smoking or vaping produces an initial "bolus" of nicotine in the blood and brain, lasting ~5 minutes with a peak concentration of ~100-200 nM.
View Article and Find Full Text PDFVolumetric functional imaging of transient cellular signaling and motion dynamics poses a significant challenge to current microscopy techniques, primarily due to limitations in hardware bandwidth and the restricted photon budget within short exposure times. In response to this challenge, we present squeezed light field microscopy (SLIM), a computational imaging method that enables rapid detection of high-resolution three-dimensional (3D) light signals using only a single, low-format camera sensor area. SLIM pushes the boundaries of 3D optical microscopy, achieving over one thousand volumes per second across a large field of view of 550 μm in diameter and 300 μm in depth with a spatial resolution of 3.
View Article and Find Full Text PDFHigh-density, integrated silicon electrodes have begun to transform systems neuroscience, by enabling large-scale neural population recordings with single cell resolution. Existing technologies, however, have provided limited functionality in nonhuman primate species such as macaques, which offer close models of human cognition and behavior. Here, we report the design, fabrication, and performance of Neuropixels 1.
View Article and Find Full Text PDFOptical implants to control and monitor neuronal activity in vivo have become foundational tools of neuroscience. Standard two-dimensional histology of the implant location, however, often suffers from distortion and loss during tissue processing. To address that, we developed a three-dimensional post hoc histology method called "light-guided sectioning" (LiGS), which preserves the tissue with its optical implant in place and allows staining and clearing of a volume up to 500 μm in depth.
View Article and Find Full Text PDFDorsal Excitor motor neuron DE-3 in the medicinal leech plays three very different dynamical roles in three different behaviors. Without rewiring its anatomical connectivity, how can a motor neuron dynamically switch roles to play appropriate roles in various behaviors? We previously used voltage-sensitive dye imaging to record from DE-3 and most other neurons in the leech segmental ganglion during (fictive) swimming, crawling, and local-bend escape (Tomina and Wagenaar, 2017). Here, we repeated that experiment, then re-imaged the same ganglion using serial blockface electron microscopy and traced DE-3's processes.
View Article and Find Full Text PDFThe ability to recognize motivationally salient events and adaptively respond to them is critical for survival. Here, we tested whether dopamine (DA) neurons in the dorsal raphe nucleus (DRN) contribute to this process in both male and female mice. Population recordings of DRN neurons during associative learning tasks showed that their activity dynamically tracks the motivational salience, developing excitation to both reward-paired and shock-paired cues.
View Article and Find Full Text PDFSignificance: Mid-infrared (IR) imaging based on the vibrational transition of biomolecules provides good chemical-specific contrast in label-free imaging of biology tissues, making it a popular tool in both biomedical studies and clinical applications. However, the current technology typically requires thin and dried or extremely flat samples, whose complicated processing limits this technology's broader translation.
Aim: To address this issue, we report mid-IR photoacoustic microscopy (PAM), which can readily work with fresh and thick tissue samples, even when they have rough surfaces.
Persistent neural activity in cortical, hippocampal, and motor networks has been described as mediating working memory for transiently encountered stimuli. Internal emotional states, such as fear, also persist following exposure to an inciting stimulus, but it is unclear whether slow neural dynamics are involved in this process. Neurons in the dorsomedial and central subdivisions of the ventromedial hypothalamus (VMHdm/c) that express the nuclear receptor protein NR5A1 (also known as SF1) are necessary for defensive responses to predators in mice.
View Article and Find Full Text PDFAmong animals with visual processing mechanisms, the leech is a rare example in which all neurons can be identified. However, little is known about its visual system, which is composed of several pigmented head eyes and photosensitive non-pigmented sensilla that are distributed across its entire body. Although several interneurons are known to respond to visual stimuli, their response properties are poorly understood.
View Article and Find Full Text PDFTwo-photon microscopy is a key imaging technique in life sciences due to its superior deep-tissue imaging capabilities. Light-weight and compact two-photon microscopes are of great interest because of their applications for in vivo deep brain imaging. Recently, dielectric metasurfaces have enabled a new category of small and lightweight optical elements, including objective lenses.
View Article and Find Full Text PDFIn this protocol, we introduce an effective method for voltage-sensitive dye (VSD) loading and imaging of leech ganglia as used in Tomina and Wagenaar (2017). Dissection and dye loading procedures are the most critical steps toward successful whole-ganglion VSD imaging. The former entails the removal of the sheath that covers neurons in the segmental ganglion of the leech, which is required for successful dye loading.
View Article and Find Full Text PDFSensitivity to water waves is a key modality by which aquatic predators can detect and localize their prey. For one such predator - the medicinal leech, - behavioral responses to visual and mechanical cues from water waves are well documented. Here, we quantitatively characterized the response patterns of a multisensory interneuron, the S cell, to mechanically and visually cued water waves.
View Article and Find Full Text PDFStudies of neuronal network emergence during sensory processing and motor control are greatly facilitated by technologies that allow us to simultaneously record the membrane potential dynamics of a large population of neurons in single cell resolution. To achieve whole-brain recording with the ability to detect both small synaptic potentials and action potentials, we developed a voltage-sensitive dye (VSD) imaging technique based on a double-sided microscope that can image two sides of a nervous system simultaneously. We applied this system to the segmental ganglia of the medicinal leech.
View Article and Find Full Text PDFMultielectrode arrays (MEAs) allow for acquisition of multisite electrophysiological activity with submillisecond temporal resolution from neural preparations. The signal to noise ratio from such arrays has recently been improved by substrate perforations that allow negative pressure to be applied to the tissue; however, such arrays are not optically transparent, limiting their potential to be combined with optical-based technologies. We present here multi-suction electrode arrays (MSEAs) in quartz that yield a substantial increase in the detected number of units and in signal to noise ratio from mouse cortico-hippocampal slices and mouse retina explants.
View Article and Find Full Text PDFThe medicinal leech (genus Hirudo) is a classic model animal in systems neuroscience. The leech has been central to many integrative studies that establish how properties of neurons and their interconnections give rise to the functioning of the animal at the behavioral level. Leeches exhibit several discrete behaviors (such as crawling, swimming and feeding) that are each relatively simple.
View Article and Find Full Text PDFThe "local bend response" of the medicinal leech (Hirudo verbana) is a stimulus-response pathway that enables the animal to bend away from a pressure stimulus applied anywhere along its body. The neuronal circuitry that supports this behavior has been well described, and its responses to individual stimuli are understood in quantitative detail. We probed the local bend system with pairs of electrical stimuli to sensory neurons that could not logically be interpreted as a single touch to the body wall and used multiple suction electrodes to record simultaneously the responses in large numbers of motor neurons.
View Article and Find Full Text PDFMany of today's radiofrequency-emitting devices in telecommunication, telemedicine, transportation safety, and security/military applications use the millimeter wave (MMW) band (30-300 GHz). To evaluate the biological safety and possible applications of this radiofrequency band for neuroscience and neurology, we have investigated the physiological effects of low-intensity 60-GHz electromagnetic irradiation on individual neurons in the leech midbody ganglia. We applied incident power densities of 1, 2, and 4 mW/cm(2) to the whole ganglion for a period of 1 min while recording the action potential with a standard sharp electrode electrophysiology setup.
View Article and Find Full Text PDFWhile moving through their environment, medicinal leeches stop periodically and wave their head or body back and forth. This activity has been previously described as two separate behaviors: one called 'head movement' and another called 'body waving'. Here, we report that these behaviors exist on a continuum, and provide a detailed description of what we now call 'scanning'.
View Article and Find Full Text PDFNeuroscience research increasingly relies on optical methods for evoking neuronal activity as well as for measuring it, making bright and stable light sources critical building blocks of modern experimental setups. This paper presents a method to control the brightness of a high-power light emitting diode (LED) light source to an unprecedented level of stability. By continuously monitoring the actual light output of the LED with a photodiode and feeding the result back to the LED's driver by way of a proportional-integral controller, drift was reduced to as little as 0.
View Article and Find Full Text PDFMedicinal leeches, like many aquatic animals, use water disturbances to localize their prey, so they need to be able to determine if a wave disturbance is created by prey or by another source. Many aquatic predators perform this separation by responding only to those wave frequencies representing their prey. As leeches' prey preference changes over the course of their development, we examined their responses at three different life stages.
View Article and Find Full Text PDFNeurosci Lett
November 2010
Medicinal leeches (Hirudo spp.) swim using a metachronal, front-to-back undulation. The behavior is generated by central pattern generators (CPGs) distributed along the animal's midbody ganglia and is coordinated by both central and peripheral mechanisms.
View Article and Find Full Text PDFBackground: Medicinal leeches (Hirudo spp.) are simultaneous hermaphrodites. Mating occurs after a stereotyped twisting and oral exploration that result in the alignment of the male and/or female gonopores of one leech with the complementary gonopores of a partner.
View Article and Find Full Text PDF