Citrus bacterial canker (CBC), caused by Xanthomonas citri subsp. citri (Xcc), causes dramatic losses to the citrus industry worldwide. Transcription activator-like effectors (TALEs), which bind to effector binding elements (EBEs) in host promoters and activate transcription of downstream host genes, contribute significantly to Xcc virulence.
View Article and Find Full Text PDFPhytopathogenic bacteria inject effector proteins into plant host cells to promote disease. Plant resistance (R) genes encoding nucleotide-binding leucine-rich repeat (NLR) proteins mediate the recognition of functionally and structurally diverse microbial effectors, including transcription-activator like effectors (TALEs) from the bacterial genus Xanthomonas. TALEs bind to plant promoters and transcriptionally activate either disease-promoting host susceptibility (S) genes or cell death-inducing executor-type R genes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2021
Calcium (Ca)-dependent protein kinases (CDPKs or CPKs) are a unique family of Ca sensor/kinase-effector proteins with diverse functions in plants. In , CPK28 contributes to immune homeostasis by promoting degradation of the key immune signaling receptor-like cytoplasmic kinase BOTRYTIS-INDUCED KINASE 1 (BIK1) and additionally functions in vegetative-to-reproductive stage transition. How CPK28 controls these seemingly disparate pathways is unknown.
View Article and Find Full Text PDFImmune recognition in plants is governed by two major classes of receptors: pattern recognition receptors (PRRs) and nucleotide-binding leucine-rich repeat receptors (NLRs). Located at the cell surface, PRRs bind extracellular ligands originating from microbes (indicative of "non-self") or damaged plant cells (indicative of "infected-self"), and trigger signaling cascades to protect against infection. Located intracellularly, NLRs sense pathogen-induced physiological changes and trigger localized cell death and systemic resistance.
View Article and Find Full Text PDFObjective: Plant cells detect the presence of potentially pathogenic microorganisms in the apoplast via plasma membrane-localized receptors. Activated receptors trigger phosphorylation-mediated signaling cascades that protect the cell from infection. It is thought that signaling triggered by the detection of exogenous signals, such as bacterial flagellin, can be amplified by endogenous signals, such as hormones or debris caused by cell damage, to potentiate robust immune responses.
View Article and Find Full Text PDF