Using a first-principles-based effective Hamiltonian within molecular dynamics simulations, we discover that applying an electric field that is opposite to the initial direction of the polarization results in a switching of both the polarization and the magnetic chirality vector of multiferroic BiFeO3 at an ultrafast pace (namely, of the order of picoseconds). We discuss the origin of such a double ultrafast switching, which is found to involve original intermediate magnetic states and may hold promise for designing various devices.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
February 2014
Recently, strain engineering has been shown to be a powerful and flexible means of tailoring the properties of ABO3 perovskite thin films. The effect of epitaxial strain on the structure of the perovskite unit cell can induce a host of interesting effects, these arising from either polar cation shifts or rotation of the oxygen octahedra, or both. In the multi-ferroic perovskite bismuth ferrite (BiFeO3-BFO), both degrees of freedom exist, and thus a complex behaviour may be expected as one plays with epitaxial strain.
View Article and Find Full Text PDFMultiferroics are compounds that show ferroelectricity and magnetism. BiFeO3, by far the most studied, has outstanding ferroelectric properties, a cycloidal magnetic order in the bulk, and many unexpected virtues such as conductive domain walls or a low bandgap of interest for photovoltaics. Although this flurry of properties makes BiFeO3 a paradigmatic multifunctional material, most are related to its ferroelectric character, and its other ferroic property--antiferromagnetism--has not been investigated extensively, especially in thin films.
View Article and Find Full Text PDFAn effective Hamiltonian is developed to investigate the magnetic cycloid of the BiFeO3 (BFO) multiferroic. This approach reproduces many complex features of this cycloid, such as its plane of rotation containing the polarization and the newly discovered spin density waves resulting from the canting of magnetic dipoles out of this cycloidal plane. It also suggests that the energetic origin of the cycloid can be thought of in terms of the converse spin-current model, and reveals the mechanisms responsible for the spin density waves.
View Article and Find Full Text PDFPhys Rev Lett
July 2009
Properties of BiFeO_{3} under an electric field are simulated using an ab initio-based approach. Complex paths and anomalous phenomena occur, depending on the direction of the field. Examples of such phenomena are the rotations of the polarization and of the axis about which the oxygen octahedra tilt; isostructural transitions; disappearance and reappearance of the tilting of the oxygen octahedra; and reentrance into specific crystallographic classes.
View Article and Find Full Text PDF