Self-assembling protein nanoparticles are being increasingly utilized in the design of next-generation vaccines due to their ability to induce antibody responses of superior magnitude, breadth, and durability. Computational protein design offers a route to novel nanoparticle scaffolds with structural and biochemical features tailored to specific vaccine applications. Although strategies for designing new self-assembling proteins have been established, the recent development of powerful machine learning-based tools for protein structure prediction and design provides an opportunity to overcome several of their limitations.
View Article and Find Full Text PDFAntibodies are engineerable quantities in medicine. Learning antibody molecular recognition would enable the in silico design of high affinity binders against nearly any proteinaceous surface. Yet, publicly available experiment antibody sequence-binding datasets may not contain the mutagenic, antigenic, or antibody sequence diversity necessary for deep learning approaches to capture molecular recognition.
View Article and Find Full Text PDFAntibodies are engineerable quantities in medicine. Learning antibody molecular recognition would enable the design of high affinity binders against nearly any proteinaceous surface. Yet, publicly available experiment antibody sequence-binding datasets may not contain the mutagenic, antigenic, or antibody sequence diversity necessary for deep learning approaches to capture molecular recognition.
View Article and Find Full Text PDFHere, we describe a protocol to identify escape mutants on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) receptor-binding domain (RBD) using a yeast screen combined with deep mutational scanning. Over 90% of all potential single S RBD escape mutants can be identified for monoclonal antibodies that directly compete with angiotensin-converting enzyme 2 for binding. Six to 10 antibodies can be assessed in parallel.
View Article and Find Full Text PDFThe potential emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) escape mutants is a threat to the efficacy of existing vaccines and neutralizing antibody (nAb) therapies. An understanding of the antibody/S escape mutation landscape is urgently needed to preemptively address this threat. Here we describe a rapid method to identify escape mutants for nAbs targeting the S receptor binding site.
View Article and Find Full Text PDFThe potential emergence of SARS-CoV-2 Spike (S) escape mutants is a threat to reduce the efficacy of existing vaccines and neutralizing antibody (nAb) therapies. An understanding of the antibody/S escape mutations landscape is urgently needed to preemptively address this threat. Here we describe a rapid method to identify escape mutants for nAbs targeting the S receptor binding site.
View Article and Find Full Text PDF