Oxidant stress influences many cellular processes, including cell growth, differentiation, and cell death. A well-recognized link between these processes and oxidant stress is via alterations in Ca(2+) signaling. However, precisely how oxidants influence Ca(2+) signaling remains unclear.
View Article and Find Full Text PDFSpecific residues in the putative pore helix, selectivity filter, and S6 transmembrane helix of the inositol 1,4,5-trisphosphate receptor were mutated in order to examine their effects on channel function. Mutation of 5 of 8 highly conserved residues in the pore helix/selectivity filter region inactivated the channel (C2533A, G2541A, G2545A, G2546A, and G2547A). Of the remaining three mutants, C2527A and R2543A were partially active and G2549A behaved like wild type receptor.
View Article and Find Full Text PDFThe role of inositol 1,4,5-trisphosphate receptors (IP(3)R) in caspase-3 activation and cell death was investigated in DT40 chicken B-lymphocytes stably expressing various IP(3)R constructs. Both full-length type-I IP(3)R and a truncated construct corresponding to the caspase-3 cleaved "channel-only" fragment were able to support staurosporine (STS)-induced caspase-3 activation and cell death even when the IP(3)R construct harbored a mutation that inactivates the pore of the Ca(2+) channel (D2550A). However, a full-length wild-type IP(3)R did not promote caspase-3 activation when the 159-amino acid cytosol-exposed C-terminal tail was deleted.
View Article and Find Full Text PDFmyo-Inositol 1,4,5-trisphosphate receptor (IP3R) degradation occurs in response to carbachol (Cch) stimulation of CHO-K1 cells. The response was mediated by endogenous muscarinic receptors and was blocked by atropine or proteasomal inhibitors. We have used these cells to identify the sites of ubiquitination on IP3Rs and study the role of Ca2+ and substrate recognition properties of the degradation system using exogenously expressed IP3R constructs.
View Article and Find Full Text PDFReactive oxygen species (ROS) play a divergent role in both cell survival and cell death during ischemia/reperfusion (I/R) injury and associated inflammation. In this study, ROS generation by activated macrophages evoked an intracellular Ca2+ ([Ca2+]i) transient in endothelial cells that was ablated by a combination of superoxide dismutase and an anion channel blocker. [Ca2+]i store depletion, but not extracellular Ca2+ chelation, prevented [Ca2+]i elevation in response to O2*- that was inositol 1,4,5-trisphosphate (InsP3) dependent, and cells lacking the three InsP3 receptor (InsP3R) isoforms failed to display the [Ca2+]i transient.
View Article and Find Full Text PDF