The left ventricle (LV) pressure-volume (PV) loop provides comprehensive characteristic information into ventricular mechanics, aiding in the assessment of systolic and diastolic function. However, its routine clinical application is limited due to the invasiveness of conventional LV catheterization procedures. This study introduces a novel analytical framework for estimating LV pressure (LVP) waveforms noninvasively, using carotid pressure waveforms and routine cardiac imaging.
View Article and Find Full Text PDFJ R Soc Interface
February 2025
Wave propagation in the heart tube is key to establishing an early pumping mechanism, as explained by impedance pump theory in zebrafish. Though initially proposed for embryonic blood circulation, the role of impedance-like behaviour in the mature cardiovascular system remains unclear. This study focuses on the understudied physiological mechanism of longitudinal displacement in the adult aorta caused by the long-axis motion of the heart.
View Article and Find Full Text PDFFor univentricular heart patients, the Fontan circulation presents a unique pathophysiology due to chronic non-pulsatile low-shear-rate pulmonary blood flow, where non-Newtonian effects are likely substantial. This study evaluates the influence of non-Newtonian behavior of blood on fluid dynamics and energetic efficiency in pediatric patient-specific models of the Fontan circulation. We used immersed boundary-lattice Boltzmann method simulations to compare Newtonian and non-Newtonian viscosity models.
View Article and Find Full Text PDFLeft ventricular (LV) pressure-volume loop (PV-loop) is an important tool to quantify intrinsic left ventricular properties and ventricular-arterial coupling. A significant drawback of conventional PV-loop assessment is the need of invasive measurements which limits its widespread application. To tackle this issue, we developed a PV-loop determination method by using non-invasive measurements from arterial tonometry and cardiac magnetic resonance imaging.
View Article and Find Full Text PDFType B aortic dissection is a life-threatening medical emergency that can result in rupture of the aorta. Due to the complexity of patient-specific characteristics, only limited information on flow patterns in dissected aortas has been reported in the literature. Leveraging the medical imaging data for patient-specific in vitro modeling can complement the hemodynamic understanding of aortic dissections.
View Article and Find Full Text PDFIntraventricular hemorrhage is characterized by blood leaking into the cerebral ventricles and mixing with cerebrospinal fluid. A standard treatment method involves inserting a passive drainage catheter, known as an external ventricular drain (EVD), into the ventricle. EVDs have common adverse complications, including the occlusion of the catheter, that may lead to permanent neural damage or even mortality.
View Article and Find Full Text PDFFront Bioeng Biotechnol
June 2021
The association between blood viscosity and pathological conditions involving a number of organ systems is well known. However, how the body measures and maintains appropriate blood viscosity is not well-described. The literature endorsing the function of the carotid sinus as a site of baroreception can be traced back to some of the earliest descriptions of digital pressure on the neck producing a drop in blood delivery to the brain.
View Article and Find Full Text PDFBackground: Previous studies on aneurysm modeling have focused on the blood rheology and vessel elasticity separately. The combined effects of blood shear thinning properties and wall elasticity need to be revealed.
Objective: To provide insights on how pulsatile hemodynamics vary with blood rheology and vessel elasticity for a developed abdominal aortic aneurysm (AAA).