The metalloprotease meprin β is upregulated in neurons and astrocytes of Alzheimer's disease patients' brains. While the role of meprin β as the β-secretase of amyloid precursor protein (APP) has been characterized, its broader substrate profile within the brain remains largely unexplored. Hence, to identify additional substrates, we conducted N-terminomics of brain lysates from mice overexpressing meprin β in astrocytes employing the Hydrophobic Tagging-Assisted N-terminal Enrichment (HYTANE) strategy.
View Article and Find Full Text PDFSeveral steps of cancer progression, from tumor onset to metastasis, critically involve proteolytic activity. To elucidate the role of proteases in cancer, it is particularly important to consider single-nucleotide variants (SNVs) that affect the active site of proteases, thereby influencing cleavage specificity, substrate processing, and thus cancer cell behavior. To facilitate systematic studies, we here present a targeted approach to determine the impact of cancer-associated protease variants (TACAP).
View Article and Find Full Text PDF