Forest stand and environmental factors influence soil organic carbon (SOC) storage, but little is known about their relative impacts in different soil layers. Moreover, how environmental factors modulate the impact of stand factors, particularly species mixing, on SOC storage, is largely unexplored. In this study, conducted in 21 forest triplets (two monocultures of different species and their mixture on the same site) distributed in Europe, we tested the hypothesis that stand factors (functional identity and diversity) have stronger effects on topsoil (FF + 0-10 cm) C storage than environmental factors (climatic water availability, clay + silt content, oxalate-extractable Al-Al) but that the opposite occurs in the subsoil (10-40 cm).
View Article and Find Full Text PDFUnlabelled: While the impacts of forest management options on carbon (C) storage are well documented, the way they affect C distribution among ecosystem components remains poorly investigated. Yet, partitioning of total forest C stocks, particularly between aboveground woody biomass and the soil, greatly impacts the stability of C stocks against disturbances in forest ecosystems. This study assessed the impact of species composition and stand density on C storage in aboveground woody biomass (stem + branches), coarse roots, and soil, and their partitioning in pure and mixed forests in Europe.
View Article and Find Full Text PDF