Publications by authors named "Corentin Affortit"

The transcription factor is widely expressed during early inner ear development, and mice lacking expression exhibit fusion of cochlear and vestibular hair cells and fail to form the ductus reuniens and the endolymphatic sac. ( ), a recessive null mutation, results in non-functional expression, which expands from the outer sulcus to the stria vascularis and Reissner's membrane. In the absence of , we observe a lack of proteins specific to the stria vascularis, such as BSND and KCNQ1 in marginal cells and CD44 in intermediate cells.

View Article and Find Full Text PDF

Dominant optic atrophy (DOA) is one of the most prevalent forms of hereditary optic neuropathies and is mainly caused by heterozygous variants in OPA1, encoding a mitochondrial dynamin-related large GTPase. The clinical spectrum of DOA has been extended to a wide variety of syndromic presentations, called DOAplus, including deafness as the main secondary symptom associated to vision impairment. To date, the pathophysiological mechanisms underlying the deafness in DOA remain unknown.

View Article and Find Full Text PDF

Wolfram syndrome (WS) is a rare neurodegenerative disorder encompassing diabetes mellitus, diabetes insipidus, optic atrophy, hearing loss (HL) as well as neurological disorders. None of the animal models of the pathology are presenting with an early onset HL, impeding the understanding of the role of Wolframin (WFS1), the protein responsible for WS, in the auditory pathway. We generated a knock-in mouse, the Wfs1 line, presenting a human mutation leading to severe deafness in affected individuals.

View Article and Find Full Text PDF

Background: The primary pathological alterations of Pendred syndrome are endolymphatic pH acidification and luminal enlargement of the inner ear. However, the molecular contributions of specific cell types remain poorly characterized. Therefore, we aimed to identify pH regulators in pendrin-expressing cells that may contribute to the homeostasis of endolymph pH and define the cellular pathogenic mechanisms that contribute to the dysregulation of cochlear endolymph pH in Slc26a4 mice.

View Article and Find Full Text PDF

Resistance to thyroid hormone due to mutations in , which encodes the thyroid hormone receptor α (TRα1), shows variable clinical presentation. Mutations affecting TRβ1 and TRβ2 cause deafness in mice and have been associated with deafness in humans. To test whether TRα1 also affects hearing function, we used mice heterozygous for a frameshift mutation in that is similar to human mutations ( mice) and reduces tissue sensitivity to thyroid hormone.

View Article and Find Full Text PDF

Viral-mediated gene augmentation, silencing, or editing offers tremendous promise for the treatment of inherited and acquired deafness. Inner-ear gene therapies often require a safe, clinically useable and effective route of administration to target both ears, while avoiding damage to the delicate structures of the inner ear. Here, we examined the possibility of using a cisterna magna injection as a new cochlear local route for initiating binaural transduction by different serotypes of the adeno-associated virus (AAV2/8, AAV2/9, AAV2/Anc80L65).

View Article and Find Full Text PDF

Recent studies demonstrated that reversible continuous noise exposure may induce a temporary threshold shift (TTS) with a permanent degeneration of auditory nerve fibers, although hair cells remain intact. To probe the impact of TTS-inducing impulse noise exposure on hearing, CBA/J Mice were exposed to noise impulses with peak pressures of 145 dB SPL. We found that 30 min after exposure, the noise caused a mean elevation of ABR thresholds of ~30 dB and a reduction in DPOAE amplitude.

View Article and Find Full Text PDF

Background: Age-related hearing loss (ARHL), also known as presbycusis, is the most common sensory impairment seen in elderly people. However, the cochlear aging process does not affect people uniformly, suggesting that both genetic and environmental (e.g.

View Article and Find Full Text PDF

Over the last decade, pioneering molecular gene therapy for inner-ear disorders have achieved experimental hearing improvements after a single local or systemic injection of adeno-associated, virus-derived vectors (rAAV for recombinant AAV) encoding an extra copy of a normal gene, or ribozymes used to modify a genome. These results hold promise for treating congenital or later-onset hearing loss resulting from monogenic disorders with gene therapy approaches in patients. In this review, we summarize the current state of rAAV-mediated inner-ear gene therapies including the choice of vectors and delivery routes, and discuss the prospects and obstacles for the future development of efficient clinical rAAV-mediated cochlear gene medicine therapy.

View Article and Find Full Text PDF

In our aging society, age-related hearing loss (ARHL) has become a major socioeconomic issue. Reactive oxygen species (ROS) may be one of the main causal factors of age-related cochlear cell degeneration. We examined whether ROS-induced DNA damage response drives cochlear cell senescence and contributes to ARHL from the cellular up to the system level.

View Article and Find Full Text PDF

Communication between the endoplasmic reticulum (ER) and mitochondria plays a pivotal role in Ca signaling, energy metabolism, and cell survival. Dysfunction in this cross-talk leads to metabolic and neurodegenerative diseases. Wolfram syndrome is a fatal neurodegenerative disease caused by mutations in the ER-resident protein WFS1.

View Article and Find Full Text PDF