For more than fifty years, the enzyme-linked immunosorbent assay (ELISA) serves as the gold standard for protein biomarker detection. However, conventional ELISA requires considerable sample preparation including reagent addition, incubation, and washing steps, limiting its usefulness at the point-of-care. In this work, the "instant ELISA" (fluorophore-linked immunosorbent assay) biosensor that can measure protein biomarkers in the picomolar range within 15 min in undiluted plasma or serum with no sample preparation is described.
View Article and Find Full Text PDFAptamers are a promising class of affinity reagents because signal transduction mechanisms can be built into the reagent, so that they can directly produce a physically measurable output signal upon target binding. However, endowing the signal transduction functionality into an aptamer remains a trial-and-error process that can compromise its affinity or specificity and typically requires knowledge of the ligand binding domain or its structure. In this work, a design architecture that can convert an existing aptamer into a "reversible aptamer switch" whose kinetic and thermodynamic properties can be tuned without a priori knowledge of the ligand binding domain or its structure is described.
View Article and Find Full Text PDFNano Lett
October 2023
Diamond has emerged as a leading host material for solid-state quantum emitters, quantum memories, and quantum sensors. However, the challenges in fabricating photonic devices in diamond have limited its potential for use in quantum technologies. While various hybrid integration approaches have been developed for coupling diamond color centers with photonic devices defined in a heterogeneous material, these methods suffer from either large insertion loss at the material interface or evanescent light-matter coupling.
View Article and Find Full Text PDFWe present a generalizable approach for designing biosensors that can continuously detect small-molecule biomarkers in real time and without sample preparation. This is achieved by converting existing antibodies into target-responsive "antibody-switches" that enable continuous optical biosensing. To engineer these switches, antibodies are linked to a molecular competitor through a DNA scaffold, such that competitive target binding induces scaffold switching and fluorescent signaling of changing target concentrations.
View Article and Find Full Text PDFGroup IV color centers in diamond have garnered great interest for their potential as optically active solid-state spin qubits. The future utilization of such emitters requires the development of precise site-controlled emitter generation techniques that are compatible with high-quality nanophotonic devices. This task is more challenging for color centers with large group IV impurity atoms, which are otherwise promising because of their predicted long spin coherence times without a dilution refrigerator.
View Article and Find Full Text PDFDiamond hosts optically active color centers with great promise in quantum computation, networking, and sensing. Realization of such applications is contingent upon the integration of color centers into photonic circuits. However, current diamond quantum optics experiments are restricted to single devices and few quantum emitters because fabrication constraints limit device functionalities, thus precluding color center integrated photonic circuits.
View Article and Find Full Text PDFWe demonstrate cavity-enhanced Raman emission from a single atomic defect in a solid. Our platform is a single silicon-vacancy center in diamond coupled with a monolithic diamond photonic crystal cavity. The cavity enables an unprecedented frequency tuning range of the Raman emission (100 GHz) that significantly exceeds the spectral inhomogeneity of silicon-vacancy centers in diamond nanostructures.
View Article and Find Full Text PDFQuantum emitters are an integral component for a broad range of quantum technologies, including quantum communication, quantum repeaters, and linear optical quantum computation. Solid-state color centers are promising candidates for scalable quantum optics due to their long coherence time and small inhomogeneous broadening. However, once excited, color centers often decay through phonon-assisted processes, limiting the efficiency of single-photon generation and photon-mediated entanglement generation.
View Article and Find Full Text PDFStrongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes.
View Article and Find Full Text PDFWe demonstrate a new approach for engineering group IV semiconductor-based quantum photonic structures containing negatively charged silicon-vacancy (SiV(-)) color centers in diamond as quantum emitters. Hybrid diamond-SiC structures are realized by combining the growth of nano- and microdiamonds on silicon carbide (3C or 4H polytype) substrates, with the subsequent use of these diamond crystals as a hard mask for pattern transfer. SiV(-) color centers are incorporated in diamond during its synthesis from molecular diamond seeds (diamondoids), with no need for ion-implantation or annealing.
View Article and Find Full Text PDF