Publications by authors named "Conor O'Byrne"

β-Galactosidase enzymes catalyze the hydrolysis of terminal non-reducing β-D-galactose residues in β-galactosides. These enzymes are important in producing lactose-free dairy products, reducing the lactose content of whey in dairy products, and for production of galactooligosaccharides (GOS) as prebiotic additives to infant formula. To use β-galactosidases in industrial settings, enzyme immobilization procedures are used to enhance their activity and stability and to minimize enzyme quantities and cost.

View Article and Find Full Text PDF

The ability to sense and respond effectively to acidic stress is important for microorganisms to survive and proliferate in fluctuating environments. As specific metabolic activities can serve to buffer the cytoplasmic pH, microorganisms rewire their metabolism to favour these reactions and thereby mitigate acid stress. The orally acquired pathogen Listeria monocytogenes exploits alternative metabolic activities to overcome the acidic stress encountered in the human stomach or food products.

View Article and Find Full Text PDF

The study of how micro-organisms detect and respond to different stresses has a long history of producing fundamental biological insights while being simultaneously of significance in many applied microbiological fields including infection, food and drink manufacture, and industrial and environmental biotechnology. This is well-illustrated by the large body of work on acid stress. Numerous different methods have been used to understand the impacts of low pH on growth and survival of micro-organisms, ranging from studies of single cells to large and heterogeneous populations, from the molecular or biophysical to the computational, and from well-understood model organisms to poorly defined and complex microbial consortia.

View Article and Find Full Text PDF

Microbial population heterogeneity leads to different stress responses and growth behavior of individual cells in a population. Previously, a point mutation in the gene () encoding ribosomal protein S21 was identified in a LO28 variant, which leads to increased multi-stress resistance and a reduced maximum specific growth rate. However, the underlying mechanisms of these phenotypic changes remain unknown.

View Article and Find Full Text PDF

Listeria monocytogenes biofilms present a significant challenge in the food industry. This study explores the impact of different acidic conditions of culture media and food matrices on the development and removal of biofilms developed on stainless steel surfaces by wild-type (WT) L. monocytogenes strains as well as in two mutant derivatives, ΔsigB and ΔagrA, that have defects in the general stress response and quorum sensing, respectively.

View Article and Find Full Text PDF

The ability to survive the acidic conditions found in the stomach is crucial for the food-borne pathogen to gain access to the mammalian gastrointestinal tract. Little is currently known about how acid resistance is regulated in this pathogen and why this trait is highly variable between strains. Here, we used comparative genomics to identify a novel RofA-family transcriptional regulator, GadR, that controls the development of acid resistance.

View Article and Find Full Text PDF

Rifampicin resistance, which is genetically linked to mutations in the RNA polymerase β-subunit gene rpoB, has a global impact on bacterial transcription and cell physiology. Previously, we identified a substitution of serine 522 in RpoB (i.e.

View Article and Find Full Text PDF

The stressosome is a protein complex that senses environmental stresses and mediates the stress response in several Gram-positive bacteria through the activation of the alternative sigma factor SigB. The stressosome locus is found in 44 % of Gram-negative isolates. However, does not possess SigB.

View Article and Find Full Text PDF

Listeria monocytogenes is a foodborne pathogen that is characterized by its ability to withstand mild stresses (i.e. cold, acid, salt) often encountered in food products or food processing environments.

View Article and Find Full Text PDF

Listeria monocytogenes is a bacterial pathogen capable of causing severe infections but also thriving outside the host. To respond to different stress conditions, L. monocytogenes mainly utilizes the general stress response regulon, which largely is controlled by the alternative sigma factor Sigma B (SigB).

View Article and Find Full Text PDF

Stressosomes are signal-sensing and integration hubs identified in many bacteria. At present, the role of the stressosome has only been investigated in Gram-positive bacteria. This work represents the first characterisation of the stressosome in a Gram-negative bacterium, .

View Article and Find Full Text PDF

Listeria monocytogenes is a pathogenic bacterium that can inhabit a diverse range of environmental niches. This is largely attributed to the high proportion of carbohydrate-specific phosphotransferase system (PTS) genes in its genome. Carbohydrates can be assimilated as sources of energy but additionally they can serve as niche-specific cues for L.

View Article and Find Full Text PDF

The human pathogen Listeria monocytogenes can cope with severe environmental challenges, for which the high molecular weight stressosome complex acts as the sensing hub in a complicated signal transduction pathway. Here, we show the dynamics and functional roles of the stressosome protein RsbR1 and its paralogue, the blue-light receptor RsbL, using photo-activated localization microscopy combined with single-particle tracking and single-molecule displacement mapping and supported by physiological studies. In live cells, RsbR1 is present in multiple states: in protomers with RsbS, large clusters of stressosome complexes, and in connection with the plasma membrane via Prli42.

View Article and Find Full Text PDF

Increasing proton concentration in the environment represents a potentially lethal stress for single-celled microorganisms. To survive in an acidifying environment, the foodborne pathogen quickly activates the alternative sigma factor B (σ), resulting in upregulation of the general stress response (GSR) regulon. Activation of σ is regulated by the stressosome, a multi-protein sensory complex involved in stress detection and signal transduction.

View Article and Find Full Text PDF

We present work of our COST Action on "Understanding and exploiting the impacts of low pH on micro-organisms". First, we summarise a workshop held at the European Federation of Biotechnology meeting on Microbial Stress Responses (online in 2020) on "Industrial applications of low pH stress on microbial bio-based production", as an example of an initiative fostering links between pure and applied research. We report the outcomes of a small survey on the challenging topic of developing links between researchers working in academia and industry that show that, while people in different sectors strongly support such links, barriers remain that obstruct this process.

View Article and Find Full Text PDF

The stressosome is a pseudo-icosahedral megadalton bacterial stress-sensing protein complex consisting of several copies of two STAS-domain proteins, RsbR and RsbS, and the kinase RsbT. Upon perception of environmental stress multiple copies of RsbT are released from the surface of the stressosome. Free RsbT activates downstream proteins to elicit a global cellular response, such as the activation of the general stress response in Gram-positive bacteria.

View Article and Find Full Text PDF

The alternative sigma factor B (σ) contributes to the stress tolerance of the foodborne pathogen Listeria monocytogenes by upregulating the general stress response. We previously showed that σ loss-of-function mutations arise frequently in strains of L. monocytogenes and suggested that mild stresses might favor the selection of such mutations.

View Article and Find Full Text PDF

To understand the molecular mechanisms that contribute to the stress responses of the important foodborne pathogen Listeria monocytogenes, we collected 139 strains (meat,  = 25; dairy,  = 10; vegetable,  = 8; seafood,  = 14; mixed food,  = 4; and food processing environments,  = 78), mostly isolated in Ireland, and subjected them to whole-genome sequencing. These strains were compared to 25 Irish clinical isolates and 4 well-studied reference strains. Core genome and pan-genome analysis confirmed a highly clonal and deeply branched population structure.

View Article and Find Full Text PDF

The general stress response (GSR) in Listeria monocytogenes plays a critical role in the survival of this pathogen in the host gastrointestinal tract. The GSR is regulated by the alternative sigma factor B (σB), whose role in protection against acid stress is well established. Here, we investigated the involvement of the stressosome, a sensory hub, in transducing low pH signals to induce the GSR.

View Article and Find Full Text PDF

All living cells strive to allocate cellular resources in a way that promotes maximal evolutionary fitness. While there are many competing demands for resources the main decision making process centres on whether to proceed with growth and reproduction or to "hunker down" and invest in protection and survival (or to strike an optimal balance between these two processes). The transcriptional programme active at any given time largely determines which of these competing processes is dominant.

View Article and Find Full Text PDF

The survival of microbial cells under changing environmental conditions requires an efficient reprogramming of transcription, often mediated by alternative sigma factors. The Gram-positive human pathogen Listeria monocytogenes senses and responds to environmental stress mainly through the alternative sigma factor σ (SigB), which controls expression of the general stress response regulon. SigB activation is achieved through a complex series of phosphorylation/dephosphorylation events culminating in the release of SigB from its anti-sigma factor RsbW.

View Article and Find Full Text PDF

Listeria monocytogenes is a ubiquitous environmental bacterium and intracellular pathogen that responds to stress using predominantly the alternative sigma factor SigB. Stress is sensed by a multiprotein complex, the stressosome, extensively studied in bacteria grown in nutrient media. Following signal perception, the stressosome triggers a phosphorylation cascade that releases SigB from its anti-sigma factor.

View Article and Find Full Text PDF

Protein mobility in the cytoplasm is essential for cellular functions, and slow diffusion may limit the rates of biochemical reactions in the living cell. Here, we determined the apparent lateral diffusion coefficient ( ) of GFP in as a function of osmotic stress, temperature, and media composition. We find that is much less affected by hyperosmotic stress in than under similar conditions in and .

View Article and Find Full Text PDF

Members of the human gut microbiota use glycoside hydrolase (GH) enzymes, such as β-galactosidases, to forage on host mucin glycans and dietary fibres. A human faecal metagenomic fosmid library was constructed and functionally screened to identify novel β-galactosidases. Out of the 16,000 clones screened, 30 β-galactosidase-positive clones were identified.

View Article and Find Full Text PDF

Listeria monocytogenes responds to environmental stress using a supra-macromolecular complex, the stressosome, to activate the stress sigma factor SigB. The stressosome structure, inferred from in vitro-assembled complexes, consists of the core proteins RsbR (here renamed RsbR1) and RsbS and, the kinase RsbT. The active complex is proposed to be tethered to the membrane and to support RsbR1/RsbS phosphorylation by RsbT and the subsequent release of RsbT following signal perception.

View Article and Find Full Text PDF