NP213 (Novexatin®) is a novel antifungal peptide specifically designed for the topical treatment of onychomycosis. NP213 was designed using host defense peptides (HDP), essential components of the innate immune response to infection, as a template. NP213 is a water-soluble cyclic fungicidal peptide that effectively penetrates human nail.
View Article and Find Full Text PDFOnychomycosis is a common, difficult-to-treat nail infection that is mainly caused by dermatophytes. Current therapies are not wholly effective and are associated with manifold side effects. The development of treatments for onychomycosis is challenging because standard tests are not predictive of antifungal efficacy within the nail.
View Article and Find Full Text PDFDermatophytes are the most common cause of superficial fungal infections (tinea infections) and are a specialized group of filamentous fungi capable of infecting and degrading keratinised tissues, including skin, hair, and nail. Essential to their pathogenicity and virulence is the production of a broad spectrum of proteolytic enzymes and other key proteins involved in keratin biodegradation and utilization of its breakdown products. The initial stage of biodegradation of native keratin is considered to be sulfitolysis, in which the extensive disulfide bridges present in keratin are hydrolyzed, although some secreted subtilisins can degrade dye-impregnated keratin azure without prior reduction (Sub3 and Sub4).
View Article and Find Full Text PDFSuperficial mycoses are fungal infections of the outer layers of the skin, hair and nails that affect 20-25% of the world's population, with increasing incidence. Treatment of superficial mycoses, predominantly caused by dermatophytes, is by topical and/or oral regimens. New therapeutic options with improved efficacy and/or safety profiles are desirable.
View Article and Find Full Text PDFDue to the success of therapeutic anti-inflammatory compounds to inhibit, retard, and reverse the development of colon cancer, the identification of dietary compounds as chemopreventives is being vigorously pursued. However, an important factor often overlooked is the metabolic transformation of the food-derived compounds in the gut that may affect their bioactivity. Commonly consumed dietary phenolics (esterified ferulic acid and its 5-5'-linked dimer), which have the potential to undergo predominant microbial transformations (de-esterification, hydrogenation, demethylation, dehydroxylation, and dimer cleavage), were incubated with human microbiota.
View Article and Find Full Text PDFBifidobacteria were isolated from the faeces of pigs of various ages and examined for their potential use as probiotics in combination with di- and oligosaccharides. Ninty-six per cent of the isolates were found to have characteristics in common with Bifidobacterium boum, B. thermophilum and B.
View Article and Find Full Text PDFAcetate is normally regarded as an endproduct of anaerobic fermentation, but butyrate-producing bacteria found in the human colon can be net utilisers of acetate. The butyrate formed provides a fuel for epithelial cells of the large intestine and influences colonic health. [1-(13)C]Acetate was used to investigate the contribution of exogenous acetate to butyrate formation.
View Article and Find Full Text PDFBr J Nutr
May 2004
The human pathogen Escherichia coli O157:H7 is thought to be spread by direct or indirect contact with infected animal or human faeces. The present study investigated the effects of the plant coumarin esculin and its aglycone esculetin on the survival of a strain of E. coli O157 under gut conditions.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2004
Oxalate is ingested in a wide range of animal feeds and human foods and beverages and is formed endogenously as a waste product of metabolism. Bacterial, rather than host, enzymes are required for the intestinal degradation of oxalate in man and mammals. The bacterium primarily responsible is the strict anaerobe Oxalobacter formigenes.
View Article and Find Full Text PDFAppl Environ Microbiol
February 2003
Duplicate anaerobic fermentor systems were used to examine changes in a community of human fecal bacteria supplied with different carbohydrate energy sources. A panel of group-specific fluorescent in situ hybridization probes targeting 16S rRNA sequences revealed that the fermentors supported growth of a greater proportion of Bacteroides and a lower proportion of gram-positive anaerobes related to Faecalibacterium prausnitzii, Ruminococcus flavefaciens-Ruminococcus bromii, Eubacterium rectale-Clostridium coccoides, and Eubacterium cylindroides than the proportions in the starting fecal inoculum. Nevertheless, certain substrates, such as dahlia inulin, caused a pronounced increase in the number of bacteria related to R.
View Article and Find Full Text PDFTwo newly isolated strains of obligately anaerobic bacteria from human faeces are shown here to be related to Fusobacterium prausnitzii, which is regarded as one of the most abundant colonizers of the human colon. These strains, along with Fusobacterium prausnitzii ATCC 27768(T) and 27766, are non-motile and produce butyrate, formate and lactate, but not hydrogen as fermentation products. A new finding is that all four strains produce D-lactate, but not L-lactate.
View Article and Find Full Text PDFButyrate arising from microbial fermentation is important for the energy metabolism and normal development of colonic epithelial cells and has a mainly protective role in relation to colonic disease. While certain dietary substrates such as resistant starch appear to be butyrogenic in the colon, it is not known to what extent these stimulate butyrate production directly, e.g.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
September 2002
Five strains of butyrate-producing, anaerobic, gram-positive bacteria were isolated from human faecal material. These strains were slightly curved rods that showed motility by means of multiple subterminal flagella. The DNA G + C content of the strains was 29-31 mol%.
View Article and Find Full Text PDFSeven strains of Roseburia sp., Faecalibacterium prausnitzii, and Coprococcus sp. from the human gut that produce high levels of butyric acid in vitro were studied with respect to key butyrate pathway enzymes and fermentation patterns.
View Article and Find Full Text PDFAppl Environ Microbiol
August 2002
Oxalate degradation by the anaerobic bacterium Oxalobacter formigenes is important for human health, helping to prevent hyperoxaluria and disorders such as the development of kidney stones. Oxalate-degrading activity cannot be detected in the gut flora of some individuals, possibly because Oxalobacter is susceptible to commonly used antimicrobials. Here, clarithromycin, doxycycline, and some other antibiotics inhibited oxalate degradation by two human strains of O.
View Article and Find Full Text PDF