Publications by authors named "Clayton D Elder"

Purpose Of Review: We review how 'abrupt thaw' has been used in published studies, compare these definitions to abrupt processes in other Earth science disciplines, and provide a definitive framework for how abrupt thaw should be used in the context of permafrost science.

Recent Findings: We address several aspects of permafrost systems necessary for abrupt thaw to occur and propose a framework for classifying permafrost processes as abrupt thaw in the future. Based on a literature review and our collective expertise, we propose that abrupt thaw refers to thaw processes that lead to a substantial persistent environmental change within a few decades.

View Article and Find Full Text PDF

Since 2015, NASA's Arctic Boreal Vulnerability Experiment (ABoVE) has investigated how climate change impacts the vulnerability and/or resilience of the permafrost-affected ecosystems of Alaska and northwestern Canada. ABoVE conducted extensive surveys with the Next Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) during 2017, 2018, 2019, and 2022 and with AVIRIS-3 in 2023 to characterize tundra, taiga, peatlands, and wetlands in unprecedented detail. The ABoVE AVIRIS dataset comprises ~1700 individual flight lines covering ~120,000 km with nominal 5 m × 5 m spatial resolution.

View Article and Find Full Text PDF

Carbon dioxide and methane emissions are the two primary anthropogenic climate-forcing agents and an important source of uncertainty in the global carbon budget. Uncertainties are further magnified when emissions occur at fine spatial scales (<1 km), making attribution challenging. We present the first observations from NASA's Earth Surface Mineral Dust Source Investigation (EMIT) imaging spectrometer showing quantification and attribution of fine-scale methane (0.

View Article and Find Full Text PDF

Despite the global significance of the subsurface biosphere, the degree to which it depends on surface organic carbon (OC) is still poorly understood. Here, we compare stable and radiogenic carbon isotope compositions of microbial phospholipid fatty acids (PLFAs) with those of in situ potential microbial C sources to assess the major C sources for subsurface microorganisms in biogeochemical distinct shallow aquifers (Critical Zone Exploratory, Thuringia Germany). Despite the presence of younger OC, the microbes assimilated C-free OC to varying degrees; ~31% in groundwater within the oxic zone, ~47% in an iron reduction zone, and ~70% in a sulfate reduction/anammox zone.

View Article and Find Full Text PDF