Publications by authors named "Clarisse Ribeiro"

An electronic tongue is a sensor-based system designed to mimic human taste by detecting and analyzing the chemical properties of liquids through electrochemical methods. Here, we introduce the HITS concept, an electronic tongue system that enables rapid and sequential classification of various beverages. This system utilizes a single, cost-effective platform with interdigital electrodes made of carbon printed on recyclable poly(ethylene terephthalate) (PET), significantly reducing the need for multiple electrodes.

View Article and Find Full Text PDF
Article Synopsis
  • - Adequate simulation of a tissue's natural environment is crucial for successful tissue engineering, especially in promoting osteogenic pathways in human mesenchymal stem cells (hMSC) for clinical use.
  • - Current methodologies often fail to replicate the complexity of the bone microenvironment, prompting the development of a new multifunctional platform designed to aid hMSC differentiation by integrating PVDF and cobalt ferrite microspheres with collagen and gelatin in a 3D structure.
  • - This innovative platform not only provides mechanical stimulation that mimics bone's electromechanical signals but also utilizes surface functionalization with extracellular matrix biomolecules and osteogenic media to enhance hMSC's commitment to bone formation, as evaluated through various biological assays.
View Article and Find Full Text PDF

Polymer biomaterials are being considered for tissue regeneration due to the possibility of resembling different extracellular matrix characteristics. However, most current scaffolds cannot respond to physical-chemical modifications of the cell microenvironment. Stimuli-responsive materials, such as electroactive smart polymers, are increasingly gaining attention once they can produce electrical potentials without external power supplies.

View Article and Find Full Text PDF

The loss or failure of an organ/tissue stands as one of the healthcare system's most prevalent, devastating, and costly challenges. Strategies for neural tissue repair and regeneration have received significant attention due to their particularly strong impact on patients' well-being. Many research efforts are dedicated not only to control the disease symptoms but also to find solutions to repair the damaged tissues.

View Article and Find Full Text PDF

Point-of-care (POC) devices can provide inexpensive, practical, and expedited solutions for applications ranging from biomedicine to environmental monitoring. This work reports on the development of low-cost microfluidic substrates for POC systems suitable for analytical assays, while also satisfying the need for social and environmentally conscious practices regarding circular economy, waste reduction, and the use of local resources. Thus, an innovative greener process to extract cellulose from plants including abaca, cotton, kozo, linen, and sisal, originating from different places around the world, is developed, and then the corresponding paper substrates are obtained to serve as platforms for POC assays.

View Article and Find Full Text PDF

From scientific and technological points of view, poly(vinylidene fluoride), PVDF, is one of the most exciting polymers due to its overall physicochemical characteristics. This polymer can crystalize into five crystalline phases and can be processed in the form of films, fibers, membranes, and specific microstructures, being the physical properties controllable over a wide range through appropriate chemical modifications. Moreover, PVDF-based materials are characterized by excellent chemical, mechanical, thermal, and radiation resistance, and for their outstanding electroactive properties, including high dielectric, piezoelectric, pyroelectric, and ferroelectric response, being the best among polymer systems and thus noteworthy for an increasing number of technologies.

View Article and Find Full Text PDF

Flexible and conformable conductive composites have been developed using different polymers, including water-based polyvinylpyrrolidone (PVP), chemical-resistant polyvinylidene fluoride (PVDF), and elastomeric styrene-ethylene-butylene-styrene (SEBS) reinforced with nitrogen-doped reduced graphene oxide with suitable viscosity in composites for printable solutions with functional properties. Manufactured by screen-printing using low-toxicity solvents, leading to more environmentally friendly conductive materials, the materials present an enormous step toward functional devices. The materials were enhanced in terms of filler/binder ratio, achieving screen-printed films with a sheet resistance lower than < 100 Ω/sq.

View Article and Find Full Text PDF

Since neurons were first cultured outside a living organism more than a century ago, a number of experimental techniques for their maintenance have been developed. These methods have been further adapted and refined to study specific neurobiological processes under controlled experimental conditions. Despite their limitations, the simplicity and visual accessibility of 2D cultures have enabled the study of the effects of trophic factors, adhesion molecules, and biophysical stimuli on neuron function and morphology.

View Article and Find Full Text PDF

The physico-chemical properties of the scaffold materials used for tissue regeneration strategies have a direct impact on cell shape, adhesion, proliferation, phenotypic and differentiation. Herewith, biophysical and biochemical cues have been widely used to design and develop biomaterial systems for specific tissue engineering strategies. In this context, the patterning of piezoelectric polymers that can provide electroactive stimuli represents a suitable strategy for skeletal muscle tissue engineering applications once it has been demonstrated that mechanoelectrical stimuli promote C2C12 myoblast differentiation.

View Article and Find Full Text PDF

Silk fibroin (SF) is a biocompatible natural protein with excellent mechanical characteristics. SF-based biomaterials can be structured using a number of techniques, allowing the tuning of materials for specific biomedical applications. In this study, SF films, porous membranes, and electrospun membranes were produced using solvent-casting, salt-leaching, and electrospinning methodologies, respectively.

View Article and Find Full Text PDF

The biomedical area in the scope of tissue regeneration pursues the development of advanced materials that can target biomimetic approaches and, ideally, have an active role in the environment they are placed in. This active role can be related to or driven by morphological, mechanical, electrical, or magnetic stimuli, among others. This work reports on the development of active biomaterials based on poly(3-hydroxybutyric acid--3-hydroxyvaleric acid), PHBV, a piezoelectric and biodegradable polymer, for tissue regeneration application by tailoring its morphology and functional response.

View Article and Find Full Text PDF

Tissue engineering (TE) aims to develop structures that improve or even replace the biological functions of tissues and organs. Mechanical properties, physical-chemical characteristics, biocompatibility, and biological performance of the materials are essential factors for their applicability in TE. Poly(vinylidene fluoride) (PVDF) is a thermoplastic polymer that exhibits good mechanical properties, high biocompatibility and excellent thermal properties.

View Article and Find Full Text PDF

Functional electrospun fibers incorporating ionic liquids (ILs) present a novel approach in the development of active microenviroments due to their ability to respond to external magnetic fields without the addition of magnetic particles. In this context, this work reports on the development of magnetically responsive magneto-ionic fibers based on the electroactive polymer poly(vinylidene fluoride) and the magnetic IL (MIL), bis(1-butyl-3-methylimidazolium) tetrathiocyanatocobaltate ([Bmim][(SCN)Co]). The PVDF/MIL electrospun fibers were prepared incorporating 5, 10 and 15 wt.

View Article and Find Full Text PDF

Electroactive smart materials play an important role for tissue regenerative applications. Poly(vinylidene fluoride) (PVDF) is a specific subtype of piezoelectric electroactive material that generates electrical potential upon mechanical stimulation. This work focuses on the application of piezoelectric PVDF films for neural differentiation.

View Article and Find Full Text PDF

The incidence of bone disorders worldwide is increasing. For this reason, new and more effective strategies for bone repair are needed. The most common strategy used for cell regeneration relies in biochemical stimulation while biophysical stimulation using mechanical, and electrical cues is a promising, however, still under-investigated field.

View Article and Find Full Text PDF

Electroactive materials allow the modulation of cell-materials interactions and cell fate, leading to advanced tissue regeneration strategies. Nevertheless, their effect at the cellular level is still poorly understood. In this context, the proteome analysis of C2C12 cell differentiation cultured on piezoelectric polymer films with null average surface charge (non-poled), net positive surface charge (poled +), and net negative surface charge (poled -) has been addressed.

View Article and Find Full Text PDF

Ionic liquids (ILs) have been extensively explored and implemented in different areas, ranging from sensors and actuators to the biomedical field. The increasing attention devoted to ILs centers on their unique properties and possible combination of different cations and anions, allowing the development of materials with specific functionalities and requirements for applications. Particularly for biomedical applications, ILs have been used for biomaterials preparation, improving dissolution and processability, and have been combined with natural and synthetic polymer matrixes to develop IL-polymer hybrid materials to be employed in different fields of the biomedical area.

View Article and Find Full Text PDF

Human mesenchymal stem cells (hMSCs) secretome has been have been at the forefront of a new wave of possible therapeutic strategies for central nervous system neurodegenerative disorders, as Parkinson's disease (PD). While within its protein fraction, several promising proteins were already identified with therapeutic properties on PD, the potential of hMSCs-secretome vesicular fraction remains to be elucidated. Such highlighting is important, since hMSCs secretome-derived vesicles can act as biological nanoparticles with beneficial effects in different pathological contexts.

View Article and Find Full Text PDF

Scaffolds play an essential role in the success of tissue engineering approaches. Their intrinsic properties are known to influence cellular processes such as adhesion, proliferation and differentiation. Hydrogel-based matrices are attractive scaffolds due to their high-water content resembling the native extracellular matrix.

View Article and Find Full Text PDF

The morphological clues of scaffolds can determine cell behavior and, therefore, the patterning of electroactive polymers can be a suitable strategy for bone tissue engineering. In this way, this work reports on the influence of poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) electroactive micropatterned scaffolds on the proliferation and differentiation of bone cells. For that, micropatterned P(VDF-TrFE) scaffolds were produced by lithography in the form of arrays of lines and hexagons and then tested for cell proliferation and differentiation of pre-osteoblast cell line.

View Article and Find Full Text PDF

This work reports on magnetoelectric biomaterials suitable for effective proliferation and differentiation of myoblast in a biomimetic microenvironment providing the electromechanical stimuli associated with this tissue in the human body. Magnetoelectric films are obtained by solvent casting through the combination of a piezoelectric polymer, poly(vinylidene fluoride-trifluoro-ethylene), and magnetostrictive particles (CoFeO). The nonpoled and poled (with negative and positive surface charge) magnetoelectric composites are used to investigate their influence on C2C12 myoblast adhesion, proliferation, and differentiation.

View Article and Find Full Text PDF

Biomimetic bioreactor systems are increasingly being developed for tissue engineering applications, due to their ability to recreate the native cell/tissue microenvironment. Regarding bone-related diseases and considering the piezoelectric nature of bone, piezoelectric scaffolds electromechanically stimulated by a bioreactor, providing the stimuli to the cells, allows a biomimetic approach and thus, mimicking the required microenvironment for effective growth and differentiation of bone cells. In this work, a bioreactor has been designed and built allowing to magnetically stimulate magnetoelectric scaffolds and therefore provide mechanical and electrical stimuli to the cells through magnetomechanical or magnetoelectrical effects, depending on the piezoelectric nature of the scaffold.

View Article and Find Full Text PDF

Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) is a piezoelectric biodegradable and biocompatible polymer suitable for tissue engineering applications. The incorporation of magnetostrictive cobalt ferrites (CFO) into PHBV matrix enables the production of magnetically responsive composites, which proved to be effective in the differentiation of a variety of cells and tissues. In this work, PHBV and PHBV with CFO nanoparticles were produced in the form of films, fibers and porous scaffolds and subjected to an experimental program allowing to evaluate the degradation process under biological conditions for a period up to 8 weeks.

View Article and Find Full Text PDF

Herpetic infections caused by Herpes simplex virus (HSV) are among the most common human infections, affecting more than two quarters of the world's population. The standard treatment for orofacial herpes is the administration of antiviral drugs, mainly acyclovir (ACV). However, current products are mostly based on semisolid formulations that have limited ability to promote drug skin penetration and tend to leak from the application site, thus showing reduced ability to sustain local drug residence.

View Article and Find Full Text PDF

Cell-material interactions play an essential role in the development of scaffold-based tissue engineering strategies. Cell therapies are still limited in treating injuries when severe damage causes irreversible loss of muscle cells. Electroactive biomaterials and, in particular, piezoelectric materials offer new opportunities for skeletal muscle tissue engineering since these materials have demonstrated suitable electroactive microenvironments for tissue development.

View Article and Find Full Text PDF