In virtually all eukaryotes, the mitochondrial DNA (mtDNA) encodes proteins necessary for oxidative phosphorylation (OXPHOS) and RNAs required for their synthesis. The mechanisms of regulation of mtDNA copy number and expression are not completely understood but crucially ensure the correct stoichiometric assembly of OXPHOS complexes from nuclear- and mtDNA-encoded subunits. Here, we detect adenosine N6-methylation (6mA) on the mtDNA of diverse animal and plant species.
View Article and Find Full Text PDFCaenorhabditis elegans is one of the most popular model organisms used to genetically dissect complex biological phenomena. One common technique used routinely in the C. elegans laboratory is the generation of strains carrying combinations of genetic mutations via classical genetic crosses.
View Article and Find Full Text PDFThe ability to balance conflicting functional demands is critical for ensuring organismal survival. The transcription and repair of the mitochondrial genome (mtDNA) requires separate enzymatic activities that can sterically compete, suggesting a life-long trade-off between these two processes. Here in Caenorhabditis elegans, we find that the bZIP transcription factor ATFS-1/Atf5 (refs.
View Article and Find Full Text PDFIn multiple species, certain tissue types are prone to acquiring greater loads of mitochondrial genome (mtDNA) mutations relative to others, but the mechanisms that drive these heteroplasmy differences are unknown. We find that the conserved PTEN-induced putative kinase (PINK1/PINK-1) and the E3 ubiquitin-protein ligase parkin (PDR-1), which are required for mitochondrial autophagy (mitophagy), underlie stereotyped differences in heteroplasmy of a deleterious mitochondrial genome mutation (ΔmtDNA) between major somatic tissues types in Caenorhabditis elegans. We demonstrate that tissues prone to accumulating ΔmtDNA have lower mitophagy responses than those with low mutation levels.
View Article and Find Full Text PDFIn the version of this Technical Report originally published, chromosome representations (indicated by black lines) were missing from Fig. 2a due to a technical error. The corrected version of Fig.
View Article and Find Full Text PDFAlthough mitochondria are ubiquitous organelles, they exhibit tissue-specific morphology, dynamics and function. Here, we describe a robust approach to isolate mitochondria from specific cells of diverse tissue systems in Caenorhabditis elegans. Cell-specific mitochondrial affinity purification (CS-MAP) yields intact and functional mitochondria with exceptional purity and sensitivity (>96% enrichment, >96% purity, and single-cell and single-animal resolution), enabling comparative analyses of protein and nucleic acid composition between organelles isolated from distinct cellular lineages.
View Article and Find Full Text PDF