Publications by authors named "Christopher D Skory"

During fuel ethanol production, fermenter tanks are persistently contaminated by lactic acid bacteria (LAB), lowering ethanol yields and causing costly shutdowns for cleaning. In this study, whole-genome sequencing was conducted for 156 Lactiplantibacillus plantarum, Levilactobacillus brevis, Limosilactobacillus fermentum, and Limosilactobacillus mucosae isolates previously obtained in a two-year longitudinal study at a U.S.

View Article and Find Full Text PDF

The phage endolysin PlyCP41 when purified from exhibits lytic activity against (CP) . The anti-clostridial activity of PlyCP41 endolysin expressed in transgenic yeast () was verified in phosphate buffered saline via mixing experiments with cultured CP and transgenic yeast slurries followed by serial dilution plating and colony counts on tryptose sulfite cycloserine (CP indicator) plates. The transgenic yeast containing PlyCP41 resulted in a log 4.

View Article and Find Full Text PDF

Clostridium tyrobutyricum strain NRRL B-67062 was previously isolated from an ethanol production facility and shown to produce high yields of butyric acid. In addition, the cell-free supernatant of the fermentation broth from NRRL B-67062 contained antibacterial activity against certain Gram-positive bacteria. To determine the source of this antibacterial activity, we report the genome and genome mining of this strain.

View Article and Find Full Text PDF

Water insoluble -glucans that were enzymatically synthesized using glucansucrase that was cloned from NRRL B-1118 were previously shown to form nanoparticles via high pressure homogenization. These -glucan nanoparticles were previously shown capable of encapsulating a small hydrophobic molecule. This work demonstrates that the same -glucan can be formed into nanoparticles that encapsulate feruloylated soy glycerides from modified soybean oil, a product of interest to the cosmetic and skin care industries because of the UV absorbance and antioxidant properties of the feruloyl moiety.

View Article and Find Full Text PDF

Background: Traditional bioethanol fermentation industries are not operated under strict sterile conditions and are prone to microbial contamination. Lactic acid bacteria (LAB) are often pervasive in fermentation tanks, competing for nutrients and producing inhibitory acids that have a negative impact on ethanol-producing yeast, resulting in decreased yields and stuck fermentations. Antibiotics are frequently used to combat contamination, but antibiotic stewardship has resulted in a shift to alternative antimicrobials.

View Article and Find Full Text PDF

Control of bacterial contamination in bioethanol fermentation facilities has traditionally relied on chemical-based products such as hop acids and use of antibiotics. Recent emphasis on antibiotic stewardship has prompted new research into the development of alternative approaches to microbial remediation strategies. We recently described a recombinant peptidoglycan hydrolase, endolysin LysKB317, which inhibited strains in corn mash fermentation.

View Article and Find Full Text PDF

A Gram-stain positive, aerobic, motile, rod-shaped bacterium designated as strain CBP-2801 was isolated as a contaminant from a culture containing maize callus in Peoria, Illinois, United States. The strain is unique relative to other Cohnella species due to its slow growth and reduced number of sole carbon sources. Phylogenetic analysis using 16S rRNA indicated that strain CBP-2801 is a Cohnella bacterium and showed the highest similarity to Cohnella xylanilytica (96.

View Article and Find Full Text PDF

Numerous transcription factor genes associated with stress response are upregulated in Saccharomyces cerevisiae grown in the presence of inhibitors that result from pretreatment processes to unlock simple sugars from biomass. To determine if overexpression of transcription factors could improve inhibitor tolerance in robust S. cerevisiae environmental isolates as has been demonstrated in S.

View Article and Find Full Text PDF

Background: Commercial ethanol fermentation facilities traditionally rely on antibiotics for bacterial contamination control. Here we demonstrate an alternative approach to treat contamination using a novel peptidoglycan hydrolase (LysKB317) isolated from a bacteriophage, EcoSau. This endolysin was specially selected against strains that were isolated as contaminants from a fuel ethanol plant.

View Article and Find Full Text PDF

A variety of potential inhibitors were tested for the first time for the suppression of Erwinia amylovora, the causal agent of fire blight in apples and pears. Strain variability was evident in susceptibility to inhibitors among five independently isolated virulent strains of E. amylovora.

View Article and Find Full Text PDF

Amylose-fatty (C12-C16) ammonium salt inclusion complexes are effective antimicrobial polymers causing growth inhibition of microbes at concentrations as low as 40 μg/mL of the complex (2 μg/mL active cationic ligand). The complex was more effective at controlling microbes than the uncomplexed ligand. The complexes were found to be particularly effective at inhibiting the growth of fungi, yeast, gram (+) bacteria, and algae; its performance was affected by pH.

View Article and Find Full Text PDF

The aim of this study was to determine if the novel anti-streptococcal inhibitors, liamocins, also inhibit biofilm formation by and . strain ATCC 25175 and ATCC 33478 were tested for biofilm formation in a rapid microtiter plate (MTP) assay and the effects of added liamocins were determined. This assay measures relative biofilm growth on pin lids.

View Article and Find Full Text PDF

A high level of variation in microflora can be observed in profiles of lactic acid bacteria (LAB) from sourdoughs. Here, we present draft genome sequences of E81, LR5A, LR2, PFC-311, and the novel sp. strain PFC-70, isolated from traditional Turkish backslopped wheat sourdoughs.

View Article and Find Full Text PDF

Fuel ethanol fermentations are not performed under aseptic conditions and microbial contamination reduces yields and can lead to costly "stuck fermentations". Antibiotics are commonly used to combat contaminants, but these may persist in the distillers grains co-product. Among contaminants, it is known that certain strains of lactic acid bacteria are capable of causing stuck fermentations, while other strains appear to be harmless.

View Article and Find Full Text PDF

Several glucansucrases were surveyed for their ability to produce isomelezitose, a trisaccharide with the structure α-D-glucopyranosyl (1 → 6) β-D-fructofuranosyl (2 ↔ 1) α-D-glucopyranoside. Nearly all strains tested, with one exception, produced at least trace levels of isomelezitose. Yields were low but significant, ranging from less than 1% to approximately 5% based on sucrose.

View Article and Find Full Text PDF

Mucormycosis is a life-threatening infection caused by Mucorales fungi. Here we sequence 30 fungal genomes, and perform transcriptomics with three representative Rhizopus and Mucor strains and with human airway epithelial cells during fungal invasion, to reveal key host and fungal determinants contributing to pathogenesis. Analysis of the host transcriptional response to Mucorales reveals platelet-derived growth factor receptor B (PDGFRB) signaling as part of a core response to divergent pathogenic fungi; inhibition of PDGFRB reduces Mucorales-induced damage to host cells.

View Article and Find Full Text PDF

Our previous work showed that substitution of an amino acid that is coupled with the +2 subsite adjacent to the transition stabilizer of a glucansucrase, which produces a water-insoluble glucan, resulted in significant changes in the structures and yields of the water-insoluble glucans produced. We now describe how these changes affect the ability of the glucansucrase to bind to exogenous glucans, and how these glucans can influence the yield, product structures, and kinetics of the mutant glucansucrases. The activity of the wild-type enzyme, with threonine at position 654, is not significantly activated by added dextran, and the yield of water-insoluble glucan from sucrose is only slightly increased by dextran.

View Article and Find Full Text PDF

Rhizopus delemar and associated species attack a wide range of fruit and vegetables after harvest. Host nutrients and acidic pH are required for optimal germination of R. delemar, and we studied how this process is triggered.

View Article and Find Full Text PDF

Efficient and rapid production of value-added chemicals from lignocellulosic biomass is an important step toward a sustainable society. Lactic acid, used for synthesizing the bioplastic polylactide, has been produced by microbial fermentation using primarily glucose. Lignocellulosic hydrolysates contain high concentrations of cellobiose and xylose.

View Article and Find Full Text PDF

We expressed a glucansucrase, DsrI, from Leuconostoc mesenteroides that catalyzes formation of water-insoluble glucans from sucrose using a nisin-controlled gene expression system in Lactococcus lactis. These polymers have potential for production of biodegradable gels, fibers, and films. We optimized production of DsrI using several different background vectors, signal peptides, strains, induction conditions, and bioreactor parameters to increase extracellular accumulation.

View Article and Find Full Text PDF
Article Synopsis
  • The study compares the production of antibacterial compounds called liamocins by various strains of Aureobasidium pullulans across different growth media.
  • Results showed that certain strains, especially NRRL 50384 on sucrose medium, produced the highest yields of liamocins, which also varied in structure based on the strain and medium used.
  • These findings suggest that the effective production of unique liamocins could lead to new antibacterials for agricultural and pharmaceutical applications, while also helping researchers understand how these compounds work.
View Article and Find Full Text PDF

Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite that cellulosic hydrolysates contain xylose as well as glucose. Microbial strains capable of fermenting both glucose and xylose into lactic acid are needed for sustainable and economic lactic acid production.

View Article and Find Full Text PDF

Dialysis patients with chronic renal failure receiving deferoxamine for treating iron overload are uniquely predisposed for mucormycosis, which is most often caused by Rhizopus oryzae. Although the deferoxamine siderophore is not secreted by Mucorales, previous studies established that Rhizopus species utilize iron from ferrioxamine (iron-rich form of deferoxamine). Here we determined that the CBS domain proteins of Fob1 and Fob2 act as receptors on the cell surface of R.

View Article and Find Full Text PDF

Twelve different amino acids were each substituted for threonine-654 in a cloned glucansucrase from Leuconostoc mesenteroides NRRL B-1118. Both the native and the cloned enzyme with threonine at position 654 produced a water-insoluble glucan containing approximately 44 mol% 1,3-disubstituted α-D-glucopyranosyl units and 29 mol% 1,6-disubstituted α-D-glucopyranosyl units. Several substitutions yielded an enzyme that produced an increased percentage of 1,3-disubstituted α-D-glucopyranosyl units, with corresponding decreases in 1,6-disubstituted α-D-glucopyranosyl units.

View Article and Find Full Text PDF

Sweetpotato is a nutritional source worldwide. Soft rot caused by Rhizopus spp. is a major limiting factor in the storage of produce, rendering it potentially unsafe for human consumption.

View Article and Find Full Text PDF