Early clinical experience with the use of chimeric antigen receptor (CAR)-T cell therapies for patients with acute myeloid leukemia (AML) has been beset by high rates of toxicities and low rates of response. We convened an international workshop with the goal of bringing investigators in the field of AML-directed CAR-T cell therapy together to facilitate discussion of roadblocks and to brainstorm potential solutions. Based on discussions at the workshop, it was evident (i) that treating and targeting AML with CAR-T cells is associated with unique clinical challenges, and (ii) that variability in clinical trial design, definitions of toxicities, correlative data collection, and reporting methods hinders the field's ability to compare study outcomes and to develop best practices.
View Article and Find Full Text PDFChimeric antigen receptor T cells (CART) have demonstrated curative potential for hematological malignancies, but the optimal manufacturing has not yet been determined and may differ across products. The first step, T cell selection, removes contaminating cell types that can potentially suppress T cell expansion and transduction. While positive selection of CD4/CD8 T cells after leukapheresis is often used in clinical trials, it may modulate signaling cascades downstream of these co-receptors; indeed, the addition of a CD4/CD8-positive selection step altered CD22 CART potency and toxicity in patients.
View Article and Find Full Text PDFChimeric antigen receptor (CAR) T-cell immunotherapies targeting CD19 or CD22 induce remissions in the majority of patients with relapsed/refractory B-cell acute lymphoblastic leukemia (ALL), although relapse due to target antigen loss or downregulation has emerged as a major clinical dilemma. Accordingly, great interest exists in developing CAR T cells directed against alternative leukemia cell surface antigens that may help to overcome immunotherapeutic resistance. The fms-like tyrosine kinase 3 receptor (FLT3) is constitutively activated via FLT3 mutation in acute myeloid leukemia (AML) or wild-type FLT3 overexpression in KMT2A (lysine-specific methyltransferase 2A)-rearranged ALL, which are associated with poor clinical outcomes in children and adults.
View Article and Find Full Text PDFRemission durability following single-antigen targeted chimeric antigen receptor (CAR) T-cells is limited by antigen modulation, which may be overcome with combinatorial targeting. Building upon our experiences targeting CD19 and CD22 in B-cell acute lymphoblastic leukemia (B-ALL), we report on our phase 1 dose-escalation study of a novel murine stem cell virus (MSCV)-CD19/CD22-4-1BB bivalent CAR T-cell (CD19.22.
View Article and Find Full Text PDFBackground: Successful development of chimeric antigen receptor (CAR) T cell immunotherapy for children and adults with relapsed/refractory acute myeloid leukemia (AML) is highly desired given their poor clinical prognosis and frequent inability to achieve cure with conventional chemotherapy. Initial experiences with CD19 CAR T cell immunotherapy for patients with B-cell malignancies highlighted the critical impact of intracellular costimulatory domain selection (CD28 vs 4-1BB (CD137)) on CAR T cell expansion and in vivo persistence that may impact clinical outcomes. However, the impact of costimulatory domains on the efficacy of myeloid antigen-directed CAR T cell immunotherapy remains unknown.
View Article and Find Full Text PDFChimeric antigen receptor (CAR)-expressing T cells induce durable remissions in patients with relapsed/refractory B cell malignancies. CARs are synthetic constructs that, when introduced into mature T cells, confer a second, non-major histocompatibility complex-restricted specificity in addition to the endogenous T cell receptor (TCR). The implications of TCR activation on CAR T cell efficacy has not been well defined.
View Article and Find Full Text PDFPharmacol Ther
December 2016
Hematopoietic cells are increasingly recognized as playing key roles in tumor growth and metastatic progression. Although many studies have focused on the functional interaction of hematopoietic cells with tumor cells, few have examined the regulation of hematopoiesis by the hematopoietic stem cell (HSC) niche in the setting of cancer. Hematopoiesis occurs primarily in the bone marrow, and processes including expansion, mobilization, and differentiation of hematopoietic progenitors are tightly regulated by the specialized stem cell niche.
View Article and Find Full Text PDFAdoptive immunotherapy using chimeric antigen receptor (CAR) expressing T cells targeting the CD19 B lineage receptor has demonstrated marked success in relapsed pre-B-cell acute lymphoblastic leukaemia (ALL). Persisting CAR-T cells generate sustained pressure against CD19 that may drive unique mechanisms of resistance. Pre-B ALL originates from a committed pre-B cell or an earlier progenitor, with potential to reprogram into other hematopoietic lineages.
View Article and Find Full Text PDFAcute lymphoblastic leukemia (ALL) persisting or relapsing following bone marrow transplantation (BMT) has a dismal prognosis. Success with chimeric antigen receptor (CAR) T cells offers an opportunity to treat these patients with leukemia-redirected donor-derived T cells, which may be more functional than T cells derived from patients with leukemia but have the potential to mediate graft-versus-host disease (GVHD). We, together with others, have previously demonstrated tumor-specific T-cell dysfunction in the allogeneic environment.
View Article and Find Full Text PDFSelective targeting of non-T cells, including antigen-presenting cells (APCs), is a potential strategy to prevent graft-versus-host-disease (GVHD) but to maintain graft-versus-tumor (GVT) effects. Because type I and II interferons signal through signal transducer and activator of transcription-1 (STAT1), and contribute to activation of APCs after allogeneic bone marrow transplant (alloBMT), we examined whether the absence of STAT1 in donor APCs could prevent GVHD while preserving immune competence. Transplantation of STAT1(-/-) bone marrow (BM) prevented GVHD induced by STAT1(+/+) T cells, leading to expansion of B220(+) cells and regulatory T cells.
View Article and Find Full Text PDFLeukemia remains the most common diagnosis in pediatric oncology and, despite dramatic progress in upfront therapy, is also the most common cause of cancer-related death in children. Much of the initial improvement in outcomes for acute lymphoblastic leukemia (ALL) was due to identification of cytotoxic agents that are active against leukemia followed by the recognition that combination of these cytotoxic agents and prolonged therapy are essential for cure. Recent data demonstrating lack of progress in patients for whom standard chemotherapy fails suggests that the ability to improve outcome for these children will not be dramatically impacted through more intensive or newer cytotoxic agents.
View Article and Find Full Text PDFTranscription of the HER2 oncogene can be repressed by estrogen (E2). We now show that, a splice isoform of the nuclear receptor coactivator AIB1, AIB1-Δ4, is able to reverse E2 repression of HER2 gene expression in breast cancer cells. The first 224 amino acids of AIB1 that are absent in AIB1-Δ4, bind a co-repressor, ANCO1.
View Article and Find Full Text PDFThe oncogene nuclear receptor coactivator amplified in breast cancer 1 (AIB1) is a transcriptional coactivator that is overexpressed in various types of human cancers. However, the molecular mechanisms controlling AIB1 expression in the majority of cancers remain unclear. In this study, we identified a novel interacting protein of AIB1, forkhead-box protein G1 (FoxG1), which is an evolutionarily conserved forkhead-box transcriptional corepressor.
View Article and Find Full Text PDFThe attachment of the SUMO modifier to proteins controls cellular signaling pathways through noncovalent binding to SUMO-interaction motifs (SIMs). Canonical SIMs contain a core of hydrophobic residues that bind to a hydrophobic pocket on SUMO. Negatively charged residues of SIMs frequently contribute to binding by interacting with a basic surface on SUMO.
View Article and Find Full Text PDFThe oncogene amplified in breast cancer 1 (AIB1) is a nuclear receptor coactivator that plays a major role in the progression of various cancers. We previously identified a splice variant of AIB1 called AIB1-Δ4 that is overexpressed in breast cancer. Using mass spectrometry, we define the translation initiation of AIB1-Δ4 at Met(224) of the full-length AIB1 sequence and have raised an antibody to a peptide representing the acetylated N terminus.
View Article and Find Full Text PDFOverexpression and activation of the steroid receptor coactivator amplified in breast cancer 1 (AIB1)/steroid receptor coactivator-3 (SRC-3) have been shown to have a critical role in oncogenesis and are required for both steroid and growth factor signaling in epithelial tumors. Here, we report a new mechanism for activation of SRC coactivators. We demonstrate regulated tyrosine phosphorylation of AIB1/SRC-3 at a C-terminal tyrosine residue (Y1357) that is phosphorylated after insulin-like growth factor 1, epidermal growth factor, or estrogen treatment of breast cancer cells.
View Article and Find Full Text PDFWe assessed the ability of several factors to increase the size of tumor-antigen-specific CD8(+) T cell responses elicited by vaccines incorporating peptides and CpG-containing oligodeoxynucleotides (CpG). Neither granulocyte-macrophage colony-stimulating factor (GM-CSF) nor an immunogenic MHC class II-presented "helper" peptide increased the size of epitope-specific CD8+ T cell responses elicited by peptide+CpG-containing vaccines. In contrast, low-dose subcutaneous interleukin (IL)-2 dramatically increased the size of splenic and peripheral blood epitope-specific CD8(+) T cell responses generated by peptide+CpG-containing vaccines.
View Article and Find Full Text PDFDevelopment of CD8(+) T-cell responses targeting tumor-associated antigens after autologous stem cell transplantations (ASCTs) might eradicate residual tumor cells and decrease relapse rates. Because thymic function dramatically decreases with aging, T-cell reconstitution in the first year after ASCT in middle-aged patients occurs primarily by homeostatic peripheral expansion (HPE) of mature T cells. To study antigen-specific T-cell responses during HPE, we performed syngeneic bone marrow transplantations (BMTs) on thymectomized mice and then vaccinated the mice with peptides plus CpG-containing oligodeoxynucleotides (CpGs) in incomplete Freund adjuvant and treated the mice with systemic interleukin-2 (IL-2).
View Article and Find Full Text PDFNovel anticancer vaccination regimens that can elicit large numbers of Ag-specific T cells are needed. When we administered therapeutic vaccines containing the MHC class I-presented self-peptide tyrosinase-related protein (TRP)-2(180-188) and CpG-containing oligodeoxynucleotides (CpG ODN) to mice, growth of the TRP-2-expressing B16F1 melanoma was not inhibited compared with growth in mice that received control vaccinations. When we added systemic IL-2 to the TRP-2(180-188) plus CpG ODN vaccines, growth of B16F1 was inhibited in a CD8-dependent, epitope-specific manner.
View Article and Find Full Text PDFObjective: The physiologic role of platelet FcgammaRIIA, the only Fc receptor for IgG on human platelets, is largely unknown. FcgammaRIIA is also expressed on phagocytes such as monocytes and neutrophils, where it mediates the binding and internalization of both soluble IgG-containing complexes and IgG-coated cells. We previously reported the creation and characterization of a transgenic mouse that expresses human FcgammaRIIA on platelets and macrophages at levels comparable to that seen in humans.
View Article and Find Full Text PDFBackground: Mouse prostate cancer modeling presents unique obstacles to the study of spontaneous tumor initiation and progression due to the anatomical location of the tissue.
Results: High resolution (130 microm(x) x 130 microm(y) x 300 microm(z)), three-dimensional MRI allowed for the visualization, segmentation, and volumetric measurement of the prostate from normal and genetically engineered animals, in vivo. Additionally, MRS performed on the prostate epithelia of probasin-ErbB-2Delta x Pten(+/-) mice identified changes in the relative concentrations of the metabolites choline and citrate, which was not observed in TRAMP mice.