Publications by authors named "Christophe Chevalier"

The cellular form of the prion protein (PrPC), known for its involvement as a misfolded isoform in transmissible spongiform encephalopathies, has recently been identified to exert a protective effect against viral infections. In this study, we explored the role of 2 other prion family members, Shadoo and Doppel, in protection against influenza A virus infection in mice. Lung expression levels of these genes revealed marked differences, with high expression of PrPC, low expression of Doppel, while Shadoo remained undetectable.

View Article and Find Full Text PDF

Current poultry vaccines against influenza A viruses target the globular head region of the hemagglutinin (HA1), providing limited protection against antigenically divergent strains. Experimental subunit vaccines based on the conserved ectodomain of the matrix protein 2 (M2e) induce cross-reactive antibody responses, but fail to fully prevent virus shedding after low pathogenic avian influenza (LPAI) virus challenge, and are ineffective against highly pathogenic avian influenza (HPAI) viruses. This study assessed the benefits of combining nanoparticles bearing three tandem M2e repeats (NR-3M2e nanorings or NF-3M2e nanofilaments) with an HA1 subunit vaccine in protecting chickens against a heterologous HPAI H5N1 virus challenge.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have created a new ex vivo model using lung transplant methods to study how SARS-CoV-2 infects human lungs, addressing limitations of animal models and lab systems.
  • The study used single-cell RNA sequencing to determine that the virus primarily targets alveolar macrophages (AMs) and monocyte-derived macrophages (MoMacs), with MoMacs showing a stronger inflammatory response.
  • Findings indicate that the Wuhan strain of SARS-CoV-2 is more effective than the D614G variant, and understanding how the virus interacts with lung macrophages could inform prevention strategies.
View Article and Find Full Text PDF

In response to the increasing demand for lung transplantation, lung perfusion (EVLP) has extended the number of suitable donor lungs by rehabilitating marginal organs. However despite an expanding use in clinical practice, the responses of the different lung cell types to EVLP are not known. In order to advance our mechanistic understanding and establish a refine tool for improvement of EVLP, we conducted a pioneer study involving single cell RNA-seq on human lungs declined for transplantation.

View Article and Find Full Text PDF

Most influenza viruses express the PB1-F2 protein which is regarded as a virulence factor. However, PB1-F2 behaves differently in avian and mammalian hosts, suggesting that this protein may be involved in the species barrier crossings regularly observed in influenza viruses. To better understand the functions associated with this viral protein, we decided to compare the BioID2-derived proximity interactome of a human PB1-F2 from an H3N2 virus with that of an avian PB1-F2 from an H7N1 strain.

View Article and Find Full Text PDF

Influenza virus infection causes considerable morbidity and mortality, but current therapies have limited efficacy. We hypothesized that investigating the metabolic signaling during infection may help to design innovative antiviral approaches. Using bronchoalveolar lavages of infected mice, we here demonstrate that influenza virus induces a major reprogramming of lung metabolism.

View Article and Find Full Text PDF

The development of safe and effective vaccines in a record time after the emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a remarkable achievement, partly based on the experience gained from multiple viral outbreaks in the past decades. However, the Coronavirus Disease 2019 (COVID-19) crisis also revealed weaknesses in the global pandemic response and large gaps that remain in our knowledge of the biology of coronaviruses (CoVs) and influenza viruses, the 2 major respiratory viruses with pandemic potential. Here, we review current knowns and unknowns of influenza viruses and CoVs, and we highlight common research challenges they pose in 3 areas: the mechanisms of viral emergence and adaptation to humans, the physiological and molecular determinants of disease severity, and the development of control strategies.

View Article and Find Full Text PDF

Current inactivated vaccines against influenza A viruses (IAV) mainly induce immune responses against highly variable epitopes across strains and are mostly delivered parenterally, limiting the development of an effective mucosal immunity. In this study, we evaluated the potential of intranasal formulations incorporating conserved IAV epitopes, namely the long alpha helix (LAH) of the stalk domain of hemagglutinin and three tandem repeats of the ectodomain of the matrix protein 2 (3M2e), as universal mucosal anti-IAV vaccines in mice and chickens. The IAV epitopes were grafted to nanorings, a novel platform technology for mucosal vaccination formed by the nucleoprotein (N) of the respiratory syncytial virus, in fusion or not with the C-terminal end of the P97 protein (P97c), a recently identified Toll-like receptor 5 agonist.

View Article and Find Full Text PDF

PB1-F2 is a virulence factor of influenza A virus known to increase viral pathogenicity in mammalian hosts. PB1-F2 is an intrinsically disordered protein displaying a propensity to form amyloid-like fibers. However, the correlation between PB1-F2 structures and the resulting inflammatory response is unknown.

View Article and Find Full Text PDF

Influenza A viruses cause important diseases in both human and animal. The PB1-F2 protein is a virulence factor expressed by some influenza viruses. Its deleterious action for the infected host is mostly described in mammals, while the available information is scarce in avian hosts.

View Article and Find Full Text PDF

Proteinaceous nanostructures have emerged as a promising strategy to develop safe and efficient subunit vaccines. The ability of synthetic β-sheet self-assembling peptides to stabilize antigenic determinants and to potentiate the epitope-specific immune responses have highlighted their potential as an immunostimulating platform for antigen delivery. Nonetheless, the intrinsic polymorphism of the resulting cross-β fibrils, their length in the microscale and their close structural similarity with pathological amyloids could limit their usage in vaccinology.

View Article and Find Full Text PDF

Scour is a hydraulic risk threatening the stability of bridges in fluvial and coastal areas. Therefore, developing permanent and real-time monitoring techniques is crucial. Recent advances in strain measurements using fiber optic sensors allow new opportunities for scour monitoring.

View Article and Find Full Text PDF

Despite efforts made to develop efficient preventive strategies, infections with influenza A viruses (IAV) continue to cause serious clinical and economic problems. Current licensed human vaccines are mainly inactivated whole virus particles or split-virion administered via the parenteral route. These vaccines provide incomplete protection against IAV in high-risk groups and are poorly/not effective against the constant antigenic drift/shift occurring in circulating strains.

View Article and Find Full Text PDF

XCR1 is selectively expressed on a conventional dendritic cell subset, the cDC1 subset, through phylogenetically distant species. The outcome of antigen-targeting to XCR1 may therefore be similar across species, permitting the translation of results from experimental models to human and veterinary applications. Here we evaluated in pigs the immunogenicity of bivalent protein structures made of XCL1 fused to the external portion of the influenza virus M2 proton pump, which is conserved through strains and a candidate for universal influenza vaccines.

View Article and Find Full Text PDF

Highly pathogenic influenza A viruses (IAV) infections represent a serious threat to humans due to their considerable morbidity and mortality capacities. A good understanding of the molecular mechanisms responsible for the acute lung injury observed during this kind of infection is essential to design adapted therapies. In the current study, using an unbiased transcriptomic approach, we compared the host-responses of mice infected with two different subtypes of IAV: H1N1 vs.

View Article and Find Full Text PDF

PB1-F2 is a viral protein encoded by influenza A viruses (IAVs). PB1-F2 is implicated in virulence by triggering immune cell apoptosis and enhancing inflammation. To obtain an insight into the molecular mechanisms of PB1-F2-mediated virulence, we used the yeast two-hybrid approach to find new PB1-F2 cellular interactors.

View Article and Find Full Text PDF

Avian Influenza virus (AIV) is a major concern for the global poultry industry. Since 2012, several countries have reported AIV outbreaks among domestic poultry. These outbreaks had tremendous impact on poultry production and socio-economic repercussion on farmers.

View Article and Find Full Text PDF

The development of influenza A virus (IAV) vaccines, which elicits cross-strain immunity against seasonal and pandemic viruses is a major public health goal. As pigs are susceptible to human, avian, and swine-adapted IAV, they would be key targets of so called universal IAV vaccines, for reducing both the zoonotic risk and the economic burden in the swine industry. They also are relevant preclinical models.

View Article and Find Full Text PDF

The influenza A virus (IAV) PB1-F2 protein is a virulence factor contributing to the pathogenesis observed during IAV infections in mammals. In this study, using a mouse model, we compared the host response associated with PB1-F2 with an early transcriptomic signature that was previously associated with neutrophils and consecutively fatal IAV infections. This allowed us to show that PB1-F2 is partly involved in neutrophil-related mechanisms leading to death.

View Article and Find Full Text PDF

PB1-F2 protein is a factor of virulence of influenza A viruses which increases the mortality and morbidity associated with infection. Most seasonal H1N1 Influenza A viruses express nowadays a truncated version of PB1-F2. Here we show that truncation of PB1-F2 modified supramolecular organization of the protein in a membrane-mimicking environment.

View Article and Find Full Text PDF

PB1-F2 is a virulence factor of influenza A virus (IAV) whose functions remain misunderstood. The different roles of PB1-F2 may be linked to its structural polymorphism and to its propensity to assemble into oligomers and amyloid fibers in the vicinity of the membrane of IAV-infected cells. Here, we monitored the impact of PB1-F2 on the biochemical composition and protein structures of human epithelial pulmonary cells (A549) and monocytic cells (U937) upon IAV infection using synchrotron Fourier-transform infrared (FTIR) and deep UV (DUV) microscopies at the single-cell level.

View Article and Find Full Text PDF

PB1-F2 is a small accessory protein encoded by an alternative open reading frame in PB1 segments of most influenza A virus. PB1-F2 is involved in virulence by inducing mitochondria-mediated immune cells apoptosis, increasing inflammation, and enhancing predisposition to secondary bacterial infections. Using biophysical approaches we characterized membrane disruptive activity of the full-length PB1-F2 (90 amino acids), its N-terminal domain (52 amino acids), expressed by currently circulating H1N1 viruses, and its C-terminal domain (38 amino acids).

View Article and Find Full Text PDF