Publications by authors named "Christine Cavazza"

The [NiFe]-CODH from Rhodospirillum rubrum contains [4Fe4S] clusters that allow electron transfer from the buried active sites to the protein surface. Among them, the role of the D-cluster, located at the dimer interface is still not fully understood. In this study, the removal of the D-cluster by site-directed mutagenesis revealed remarkable features in the behavior of the enzyme.

View Article and Find Full Text PDF

The water-gas shift reaction (WGSR, CO + HO ⇔ CO + H) is widely used for the upgrading of syngas, a key substrate for various chemical processes. However, the industrial WGSR requires high pressure and temperature, and has low selectivity. Here, we have designed a biohybrid catalyst by combining CODH from , which catalyzes CO-to-CO conversion and a bioinspired nickel bisdiphosphine complex, which catalyzes the hydrogen evolution reaction, immobilized on carbon nanotubes.

View Article and Find Full Text PDF
Article Synopsis
  • - This review focuses on the benefits of using EcNikA, a nickel transport protein, to create artificial metalloenzymes for synthetic biology, particularly through the design of new active sites.
  • - It highlights how the protein's structure influences the catalytic properties of these artificial enzymes, enabling them to carry out specific reactions like epoxidation and sulfoxidation efficiently.
  • - The article compares various catalytic methods, including in vitro and in cristallo approaches, emphasizing the advantages of using protein crystals for better stabilization and faster reaction rates.
View Article and Find Full Text PDF

This work showcases the performance of [NiFeSe] hydrogenase from Desulfomicrobium baculatum for solar-driven hydrogen generation in a variety of organic-based deep eutectic solvents. Despite its well-known sensitivity towards air and organic solvents, the hydrogenase shows remarkable performance under an aerobic atmosphere in these solvents when paired with a TiO photocatalyst. Tuning the water content further increases hydrogen evolution activity to a TOF of 60±3 s and quantum yield to 2.

View Article and Find Full Text PDF

An original 1-acetato-4-(1-pyrenyl)-1,4,7-triazacyclononane (AcPyTACN) was synthesized for the immobilization of a His-tagged recombinant CODH from Rhodospirillum rubrum (RrCODH) on carbon-nanotube electrodes. The strong binding of the enzyme at the Ni-AcPyTACN complex affords a high current density of 4.9 mA cm towards electroenzymatic CO reduction and a high stability of more than 6×10  TON when integrated on a gas-diffusion bioelectrode.

View Article and Find Full Text PDF

Some carboxydotrophs like Rhodospirillum rubrum are able to grow with CO as their sole source of energy using a Carbone monoxide dehydrogenase (CODH) and an Energy conserving hydrogenase (ECH) to perform anaerobically the so called water-gas shift reaction (WGSR) (CO + HO → CO + H). Several studies have focused at the biochemical and biophysical level on this enzymatic system and a few OMICS studies on CO metabolism. Knowing that CO is toxic in particular due to its binding to heme iron atoms, and is even considered as a potential antibacterial agent, we decided to use a proteomic approach in order to analyze R.

View Article and Find Full Text PDF

Nickel insertion into nickel-dependent carbon monoxide dehydrogenase (CODH) represents a key step in the enzyme activation. This is the last step of the biosynthesis of the active site, which contains an atypical heteronuclear NiFeS cluster known as the C-cluster. The enzyme maturation is performed by three accessory proteins, namely CooC, CooT and CooJ.

View Article and Find Full Text PDF

An artificial amyloid-based redox hydrogel was designed for mediating electron transfer between a [NiFeSe] hydrogenase and an electrode. Starting from a mutated prion-forming domain of fungal protein HET-s, a hybrid redox protein containing a single benzyl methyl viologen moiety was synthesized. This protein was able to self-assemble into structurally homogenous nanofibrils.

View Article and Find Full Text PDF

Performing a heterogeneous catalysis with proteins is still a challenge. Herein, we demonstrate the importance of cross-linked crystals for sulfoxide oxidation by an artificial enzyme. The biohybrid consists of the insertion of an iron complex into a NikA protein crystal.

View Article and Find Full Text PDF

Nickel enzymes, present in archaea, bacteria, plants, and primitive eukaryotes are divided into redox and nonredox enzymes and play key functions in diverse metabolic processes, such as energy metabolism and virulence. They catalyze various reactions by using active sites of diverse complexities, such as mononuclear nickel in Ni-superoxide dismutase, glyoxylase I and acireductone dioxygenase, dinuclear nickel in urease, heteronuclear metalloclusters in [NiFe]-carbon monoxide dehydrogenase, acetyl-CoA decarbonylase/synthase and [NiFe]-hydrogenase, and even more complex cofactors in methyl-CoM reductase and lactate racemase. The presence of metalloenzymes in a cell necessitates a tight regulation of metal homeostasis, in order to maintain the appropriate intracellular concentration of nickel while avoiding its toxicity.

View Article and Find Full Text PDF

In Rhodospirillum rubrum, the maturation of carbon monoxide dehydrogenase (CODH) requires three nickel chaperones, namely RrCooC, RrCooT and RrCooJ. Recently, the biophysical characterisation of the RrCooT homodimer and the X-ray structure of its apo form revealed the existence of a solvent-exposed Ni -binding site at the dimer interface, involving the strictly conserved Cys2. Here, a multifaceted approach that used NMR and X-ray absorption spectroscopies, complemented with structural bio-modelling methodologies, was used to characterise the binding mode of Ni in RrCooT.

View Article and Find Full Text PDF

Activation of nickel enzymes requires specific accessory proteins organized in multiprotein complexes controlling metal transfer to the active site. Histidine-rich clusters are generally present in at least one of the metallochaperones involved in nickel delivery. The maturation of carbon monoxide dehydrogenase in the proteobacterium requires three accessory proteins, CooC, CooT, and CooJ, dedicated to nickel insertion into the active site, a distorted [NiFeS] cluster coordinated to an iron site.

View Article and Find Full Text PDF

Designing systems that merge the advantages of heterogeneous catalysis, enzymology, and molecular catalysis represents the next major goal for sustainable chemistry. Cross-linked enzyme crystals display most of these essential assets (well-designed mesoporous support, protein selectivity, and molecular recognition of substrates). Nevertheless, a lack of reaction diversity, particularly in the field of oxidation, remains a constraint for their increased use in the field.

View Article and Find Full Text PDF

Thioredoxin reductase (TR) regulates the intracellular redox environment by reducing thioredoxin (Trx). In anaerobes, recent findings indicate that the Trx redox network is implicated in the global redox regulation of metabolism but also actively participates in protecting cells against O. In the anaerobe Hildenborough (H), there is an intriguing redundancy of the Trx system which includes a classical system using NADPH as electron source, a non-canonical system using NADH and an isolated TR (DvTRi).

View Article and Find Full Text PDF

Artificial enzymes are required to catalyse non-natural reactions. Here, a hybrid catalyst was developed by embedding a novel Ru complex in the transport protein NikA. The protein scaffold activates the bound Ru complex to produce a catalyst with high regio- and stereo-selectivity.

View Article and Find Full Text PDF

Metal acquisition and intracellular trafficking are crucial for all cells and metal ions have been recognized as virulence determinants in bacterial pathogens. Virulence of the human gastric pathogen Helicobacter pylori is dependent on nickel, cofactor of two enzymes essential for in vivo colonization, urease and [NiFe] hydrogenase. We found that two small paralogous nickel-binding proteins with high content in Histidine (Hpn and Hpn-2) play a central role in maintaining non-toxic intracellular nickel content and in controlling its intracellular trafficking.

View Article and Find Full Text PDF

Solar-light-driven H production in water with a [NiFeSe]-hydrogenase (Hase) and a bioinspired synthetic nickel catalyst (NiP) in combination with a heptazine carbon nitride polymer, melon (CN), is reported. The semibiological and purely synthetic systems show catalytic activity during solar light irradiation with turnover numbers (TONs) of more than 50 000 mol H (mol Hase) and approximately 155 mol H (mol NiP) in redox-mediator-free aqueous solution at pH 6 and 4.5, respectively.

View Article and Find Full Text PDF

Solar-light-driven H2 production in water with a [NiFeSe]-hydrogenase (H2ase) and a bioinspired synthetic nickel catalyst (NiP) in combination with a heptazine carbon nitride polymer, melon (CN(x)), is reported. The semibiological and purely synthetic systems show catalytic activity during solar light irradiation with turnover numbers (TONs) of more than 50,000 mol H2(mol H2ase)(-1) and approximately 155 mol H2 (mol NiP)(-1) in redox-mediator-free aqueous solution at pH 6 and 4.5, respectively.

View Article and Find Full Text PDF

In human pathogenic bacteria, nickel is required for the activation of two enzymes, urease and [NiFe]-hydrogenase, necessary for host infection. Acquisition of Ni(II) is mediated by either permeases or ABC-importers, the latter including a subclass that involves an extracytoplasmic nickel-binding protein, Ni-BP. This study reports on the structure of three Ni-BPs from a diversity of human pathogens and on the existence of three new nickel-binding motifs.

View Article and Find Full Text PDF

Cobaloximes are popular H2 evolution molecular catalysts but have so far mainly been studied in nonaqueous conditions. We show here that they are also valuable for the design of artificial hydrogenases for application in neutral aqueous solutions and report on the preparation of two well-defined biohybrid species via the binding of two cobaloxime moieties, {Co(dmgH)2} and {Co(dmgBF2)2} (dmgH2 = dimethylglyoxime), to apo Sperm-whale myoglobin (SwMb). All spectroscopic data confirm that the cobaloxime moieties are inserted within the binding pocket of the SwMb protein and are coordinated to a histidine residue in the axial position of the cobalt complex, resulting in thermodynamically stable complexes.

View Article and Find Full Text PDF

Nickel is a virulence determinant for the human gastric pathogen Helicobacter pylori. Indeed, H. pylori possesses two nickel-enzymes that are essential for in vivo colonization, [NiFe] hydrogenase and urease, an abundant virulence factor that contains 24 nickel ions per active complex.

View Article and Find Full Text PDF

The pathogen Helicobacter pylori requires two nickel-containing enzymes, urease and [NiFe]-hydrogenase, for efficient colonization of the human gastric mucosa. These enzymes possess complex metallocenters that are assembled by teams of proteins in multistep pathways. One essential accessory protein is the GTPase HypB, which is required for Ni(II) delivery to [NiFe]-hydrogenase and participates in urease maturation.

View Article and Find Full Text PDF

This study shows how the NiFeSe site of an anaerobically purified O2-resistant hydrogenase reacts with air to give a seleninate as the first product. Less oxidized states of the active site are readily reduced in the presence of X-rays. Reductive enzyme activation requires an efficient pathway for water escape.

View Article and Find Full Text PDF

The ABC-type importer NikABCDE mediates nickel acquisition in Escherichia coli. The periplasmic nickel-binding component NikA has a folding similar to that of the peptide transporter OppA and does not bind free nickel. Instead, we showed that the metal is tetra-coordinated by an organic tri-dentate molecule and His416.

View Article and Find Full Text PDF