Oil and gas extraction activities occur across the globe, yet species-specific toxicological information on the biological and ecological impacts of exposure to petrochemicals is lacking for the vast majority of marine species. To help prioritize species for recovery, mitigation, and conservation in light of significant toxicological data gaps, a trait-based petrochemical vulnerability index was developed and applied to the more than 1700 marine fishes present across the entire Gulf of Mexico, including all known bony fishes, sharks, rays and chimaeras. Using life history and other traits related to likelihood of exposure, physiological sensitivity to exposure, and population resiliency, final calculated petrochemical vulnerability scores can be used to provide information on the relative sensitivity, or resilience, of marine fish populations across the Gulf of Mexico to oil and gas activities.
View Article and Find Full Text PDFGlob Chang Biol
September 2021
Predation from the invasive Indo-Pacific lionfish is likely to amplify declines in marine fishes observed in multiple ocean basins. As the invasion intensifies and expands, there is an urgent need to identify species that are most at risk for extirpation-and possible extinction-from this added threat. To address this gap and inform conservation plans, we develop and apply a quantitative framework for classifying the relative vulnerability of fishes based on morphological and behavioural traits known to influence susceptibility to lionfish predation (e.
View Article and Find Full Text PDFA fundamental understanding of the impact of petrochemicals and other stressors on marine biodiversity is critical for effective management, restoration, recovery, and mitigation initiatives. As species-specific information on levels of petrochemical exposure and toxicological response are lacking for the majority of marine species, a trait-based assessment to rank species vulnerabilities to petrochemical activities in the Gulf of Mexico can provide a more comprehensive and effective means to prioritize species, habitats, and ecosystems for improved management, restoration and recovery. To initiate and standardize this process, we developed a trait-based framework, applicable to a wide range of vertebrate and invertebrate species, that can be used to rank relative population vulnerabilities of species to petrochemical activities in the Gulf of Mexico.
View Article and Find Full Text PDF