Publications by authors named "Chrishan J A Ramachandra"

Phosphatidylserines are known to sustain skeletal muscle activity during intense activity or hypoxic conditions, as well as preserve neurocognitive function in older patients. Our previous studies pointed out a potential cardioprotective role of phosphatidylserine in heart ischemia. Therefore, we investigated the effects of phosphatidylserine oral supplementation in a mouse model of acute myocardial infarction (AMI).

View Article and Find Full Text PDF

Aims: Hypertrophic cardiomyopathy (HCM) is characterized by cardiomyocyte hypertrophy and disarray, and myocardial stiffness due to interstitial fibrosis, which result in impaired left ventricular filling and diastolic dysfunction. The latter manifests as exercise intolerance, angina, and dyspnoea. There is currently no specific treatment for improving diastolic function in HCM.

View Article and Find Full Text PDF

When faced with increased workload the heart undergoes remodelling, where it increases its muscle mass in an attempt to preserve normal function. This is referred to as cardiac hypertrophy and if sustained, can lead to impaired contractile function. Experimental evidence supports oxidative stress as a critical inducer of both genetic and acquired forms of cardiac hypertrophy, a finding which is reinforced by elevated levels of circulating oxidative stress markers in patients with cardiac hypertrophy.

View Article and Find Full Text PDF

Heart failure (HF) is one of the leading causes of death and disability worldwide. The prevalence of HF continues to rise, and its outcomes are worsened by risk factors such as age, diabetes, obesity, hypertension, and ischemic heart disease. Hence, there is an unmet need to identify novel treatment targets that can prevent the development and progression of HF in order to improve patient outcomes.

View Article and Find Full Text PDF

Acute myocardial infarction (AMI) and the heart failure (HF) that often follows are among the leading causes of death and disability worldwide. As such, new treatments are needed to protect the myocardium against the damaging effects of the acute ischaemia and reperfusion injury (IRI) that occurs in AMI, in order to reduce myocardial infarct (MI) size, preserve cardiac function, and improve patient outcomes. In this regard, cardiac mitochondria play a dual role as arbiters of cell survival and death following AMI.

View Article and Find Full Text PDF

Background: Silica nanoparticles (nanoSiO) are promising systems that can deliver biologically active compounds to tissues such as the heart in a controllable manner. However, cardiac toxicity induced by nanoSiO has been recently related to abnormal calcium handling and energetic failure in cardiomyocytes. Moreover, the precise mechanisms underlying this energetic debacle remain unclear.

View Article and Find Full Text PDF

Normal cardiac contractile and relaxation functions are critically dependent on a continuous energy supply. Accordingly, metabolic perturbations and impaired mitochondrial bioenergetics with subsequent disruption of ATP production underpin a wide variety of cardiac diseases, including diabetic cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, anthracycline cardiomyopathy, peripartum cardiomyopathy, and mitochondrial cardiomyopathies. Crucially, there are no specific treatments for preventing the onset or progression of these cardiomyopathies to heart failure, one of the leading causes of death and disability worldwide.

View Article and Find Full Text PDF

Diabetic cardiomyopathy (DC) is defined as a clinical condition of cardiac dysfunction that occurs in the absence of coronary atherosclerosis, valvular disease, and hypertension in patients with diabetes mellitus (DM). Despite the increasing worldwide prevalence of DC, due to the global epidemic of DM, the underlying pathophysiology of DC has not been fully elucidated. In addition, the clinical criteria for diagnosing DC have not been established, and specific therapeutic options are not currently available.

View Article and Find Full Text PDF
Article Synopsis
  • Cardiomyopathies are heart problems that can make it hard for the heart to pump blood and can lead to serious issues like heart failure or sudden death.
  • There are three main types of cardiomyopathies: hypertrophic (HCM), dilated (DCM), and restrictive (RCM), which are classified based on how the heart looks and works.
  • Scientists are studying tiny parts of heart muscle called myofibrils to understand how genetic mutations cause these heart diseases, which can help find better treatments in the future.
View Article and Find Full Text PDF

Myeloperoxidase (MPO) is a heme peroxidase that is primarily expressed by neutrophils. It has the capacity to generate several reactive species, essential for its inherent antimicrobial activity and innate host defense. Dysregulated MPO release, however, can lead to tissue damage, as seen in several diseases.

View Article and Find Full Text PDF

In this work, we demonstrate a sheathless acoustic fluorescence activated cell sorting (aFACS) system by combining elasto-inertial cell focusing and highly focused traveling surface acoustic wave (FTSAW) to sort cells with high recovery rate, purity, and cell viability. The microfluidic sorting device utilizes elasto-inertial particle focusing to align cells in a single file for improving sorting accuracy and efficiency without sample dilution. Our sorting device can effectively focus 1 μm particles which represents the general minimum size for a majority of cell sorting applications.

View Article and Find Full Text PDF

Reliance on low tissue penetrating UV or visible light limits clinical applicability of phototherapy, necessitating use of deep tissue penetrating near-infrared (NIR) to visible light transducers like upconversion nanoparticles (UCNPs). While typical UCNPs produce multiple simultaneous emissions for unidirectional control of biological processes, programmable control requires orthogonal non-overlapping light emissions. These can be obtained through doping nanocrystals with multiple activator ions.

View Article and Find Full Text PDF

: New treatments are needed to reduce myocardial infarct size (MI) and prevent heart failure (HF) following acute myocardial infarction (AMI), which are the leading causes of death and disability worldwide. Studies in rodent AMI models showed that genetic and pharmacological inhibition of mitochondrial fission, induced by acute ischemia and reperfusion, reduced MI size. Whether targeting mitochondrial fission at the onset of reperfusion is also cardioprotective in a clinically-relevant large animal AMI model remains to be determined.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is one of the most commonly inherited cardiac disorders that manifests with increased ventricular wall thickening, cardiomyocyte hypertrophy, disarrayed myofibers and interstitial fibrosis. The major pathophysiological features include, diastolic dysfunction, obstruction of the left ventricular outflow tract and cardiac arrhythmias. Mutations in genes that encode mostly for sarcomeric proteins have been associated with HCM but, despite the abundant research conducted to decipher the molecular mechanisms underlying the disease, it remains unclear as to how a primary defect in the sarcomere could lead to secondary phenotypes such as cellular hypertrophy.

View Article and Find Full Text PDF

Background: Preferential utilization of fatty acids for ATP production represents an advanced metabolic phenotype in developing cardiomyocytes. We investigated whether this phenotype could be attained in human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) and assessed its influence on mitochondrial morphology, bioenergetics, respiratory capacity and ultra-structural architecture.

Methods And Results: Whole-cell proteome analysis of day 14 and day 30-CMs maintained in glucose media revealed a positive influence of extended culture on mitochondria-related processes that primed the day 30-CMs for fatty acid metabolism.

View Article and Find Full Text PDF

Importance: The genetic variant MYBPC3Δ25bp occurs in 4% of South Asian descendants, with an estimated 100 million carriers worldwide. MYBPC3 Δ25bp has been linked to cardiomyopathy and heart failure. However, the high prevalence of MYBPC3Δ25bp suggests that other stressors act in concert with MYBPC3Δ25bp.

View Article and Find Full Text PDF

Aims: Loss-of-function mutations in the hERG gene causes long-QT syndrome type 2 (LQT2), a condition associated with reduced IKr current. Four different mutation classes define the molecular mechanisms impairing hERG. Among them, Class 2 mutations determine hERG trafficking defects.

View Article and Find Full Text PDF

Activation of signal transducer and activator of transcription 3 (STAT3) is imperative for mammalian development, specifically cardiogenesis. STAT3 phosphorylation and acetylation are key post-translational modifications that regulate its transcriptional activity. Significance of such modifications during human cardiogenesis remains elusive.

View Article and Find Full Text PDF

Mechanisms determining intrinsic differentiation bias inherent to human pluripotent stem cells (hPSCs) toward cardiogenic fate remain elusive. We evaluated the interplay between ErbB4 and Epidemal growth factor receptor (EGFR or ErbB1) in determining cardiac differentiation in vitro as these receptor tyrosine kinases are key to heart and brain development in vivo. Our results demonstrate that during cardiac differentiation, cell fate biases exist in hPSCs due to cardiac/neuroectoderm divergence post cardiac mesoderm stage.

View Article and Find Full Text PDF

We investigate the effects of myocardial transplantation of human induced pluripotent stem cell (iPSC)-derived progenitors and cardiomyocytes into acutely infarcted myocardium in severe combined immune deficiency mice. A total of 2 × 10(5) progenitors, cardiomyocytes or cell-free saline were injected into peri-infarcted anterior free wall. Sham-operated animals received no injection.

View Article and Find Full Text PDF

Activation of ErbB4 receptor signaling is instrumental in heart development, lack of which results in embryonic lethality. However, mechanism governing its intracellular signaling remains elusive. Using human pluripotent stem cells, we show that ErbB4 is critical for cardiogenesis whereby its genetic knockdown results in loss of cardiomyocytes.

View Article and Find Full Text PDF

Marfan syndrome (MFS) is a genetic disorder that affects multiple organs. Mortality imposed by aortic aneurysm and dissections represent the most serious clinical manifestation of MFS. Progressive pathological aortic root enlargement as the result of degeneration of microfibril architecture and consequential loss of extracellular matrix integrity due to fibrillin-1 (FBN1) mutations are commonly diagnosed clinical manifestations of MFS.

View Article and Find Full Text PDF

High-resolution optical imaging provides valuable window in examining transitional and systemic changes in cellular processes. The relative spatial relationship of structural, transport, and signaling proteins, surface antigens, and transcription factors may reveal developmental state of the cellular system. Here, we describe the use of confocal microscopy to evaluate the organization of sarcomeric structural proteins, sarcoplasmic channel proteins, and cardiac transcription factors in human pluripotent stem cell (PSC)-derived cardiomyocytes.

View Article and Find Full Text PDF

Genetically unmodified cardiomyocytes mandated for cardiac regenerative therapy is conceivable by "foot-print free" reprogramming of somatic cells to induced pluripotent stem cells (iPSC). In this study, we report generation of foot-print free hiPSC through messenger RNA (mRNA) based reprograming. Subsequently, we characterize cardiomyocytes derived from these hiPSC using molecular and electrophysiological methods to characterize their applicability for regenerative medicine.

View Article and Find Full Text PDF

Cardiomyocytes (CMs) derived from human pluripotent stem cells (hPSCs) offer immense value in studying cardiovascular regenerative medicine. However, intrinsic biases and differential responsiveness of hPSCs towards cardiac differentiation pose significant technical and logistic hurdles that hamper human cardiomyocyte studies. Tandem modulation of canonical and non-canonical Wnt signaling pathways may play a crucial role in cardiac development that can efficiently generate cardiomyocytes from pluripotent stem cells.

View Article and Find Full Text PDF