Publications by authors named "Ching-Yu Yen"

Oral cavity squamous cell carcinoma (SCC) is the most common head and neck region tumor. The pathologic T4a classification is defined tumor invasion by three distinctive subgroups with skin, bone marrow, or a depth of invasion (DOI) > 10 mm and tumor size > 40 mm, as specified in the revised AJCC 8th edition staging manual. We examined these three subgroups' different survival outcomes and explored factors influencing survival in patients with pT4a gingivobuccal SCC, and further investigate the discriminatory capacity among these three subgroups.

View Article and Find Full Text PDF

Background: 3-Hydroxy-1-(3',5'-dimethoxy-4'-hydroxy-phenyl)-hexan-5-one (3-HDM), a novel ginger Zingiber officinale-derived compound, lacks anti-cancer investigation, especially for oral cancer. This study addresses the antioral function and mechanism of 3-HDM against oral cancer cells (Ca9-22 and CAL 27).

Method: MTS, flow cytometry, and western blotting were used to determine cell viability and antioral function and mechanism.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a ubiquitous environmental pollutant with endocrine-disrupting functions. Identifying protective drugs and exploring the mechanisms against BPA are crucial in healthcare. Natural products exhibiting antioxidant properties are considered to be able to protect against BPA toxicity.

View Article and Find Full Text PDF

Immunogenic cell death (ICD) spatiotemporally regulates damage-associated molecular patterns (DAMPs) derived from dying cancer cells to signal the immune response. Intriguingly, these DAMPs and cytokines also induce cellular responses in non-immune cells, particularly cancer cells. Several ICD-modulating natural products and miRNAs have been reported to regulate the DAMP, cytokine, and cell death responses, but they lack systemic organization and connection.

View Article and Find Full Text PDF
Article Synopsis
  • * Natural products can offer protection against phthalate-induced harm, but the mechanisms behind this relationship with miRNAs and potential targets are still not well understood.
  • * The review collects and analyzes information on the adverse effects of phthalates, the miRNAs they influence, and the natural products that may reduce these effects, suggesting a potential path for future research on the interactions between natural products, miRNAs, and phthalates.
View Article and Find Full Text PDF

Several marine drugs exert anticancer effects by inducing oxidative stress, which becomes overloaded and kills cancer cells when redox homeostasis is imbalanced. The downregulation of antioxidant signaling induces oxidative stress, while its upregulation attenuates oxidative stress. Marine drugs have miRNA-modulating effects against cancer cells.

View Article and Find Full Text PDF

Ferroptosis, which comprises iron-dependent cell death, is crucial in cancer and non-cancer treatments. Exosomes, the extracellular vesicles, may deliver biomolecules to regulate disease progression. The interplay between ferroptosis and exosomes may modulate cancer development but is rarely investigated in natural product treatments and their modulating miRNAs.

View Article and Find Full Text PDF

Protein phosphatase 2A (PP2A), a heterotrimeric holoenzyme (scaffolding, catalytic, and regulatory subunits), regulates dephosphorylation for more than half of serine/threonine phosphosites and exhibits diverse cellular functions. Although several studies on natural products and miRNAs have emphasized their impacts on PP2A regulation, their connections lack systemic organization. Moreover, only part of the PP2A family has been investigated.

View Article and Find Full Text PDF

The anti-oral cancer effects of santamarine (SAMA), a var. compressa-derived natural product, remain unclear. This study investigates the anticancer effects and acting mechanism of SAMA against oral cancer (OC-2 and HSC-3) in parallel with normal (Smulow-Glickman; S-G) cells.

View Article and Find Full Text PDF

Antioral cancer drugs need a greater antiproliferative impact on cancer than on normal cells. Demethoxymurrapanine (DEMU) inhibits proliferation in several cancer cells, but an in-depth investigation was necessary. This study evaluated the proliferation-modulating effects of DEMU, focusing on oral cancer and normal cells.

View Article and Find Full Text PDF

Increased neddylation benefits the survival of several types of cancer cells. The inhibition of neddylation has the potential to exert anticancer effects but is rarely assessed in oral cancer cells. This study aimed to investigate the antiproliferation potential of a neddylation inhibitor MLN4924 (pevonedistat) for oral cancer cells.

View Article and Find Full Text PDF

Exosomes are cell-derived membranous structures primarily involved in the delivery of the payload to the recipient cells, and they play central roles in carcinogenesis and metastasis. Radiotherapy is a common cancer treatment that occasionally generates exosomal miRNA-associated modulation to regulate the therapeutic anticancer function and side effects. Combining radiotherapy and natural products may modulate the radioprotective and radiosensitizing responses of non-cancer and cancer cells, but there is a knowledge gap regarding the connection of this combined treatment with exosomal miRNAs and their downstream targets for radiation and exosome biogenesis.

View Article and Find Full Text PDF

Cancerous exosomes contain diverse biomolecules that regulate cancer progression. Modulating exosome biogenesis with clinical drugs has become an effective strategy for cancer therapy. Suppressing exosomal processing (assembly and secretion) may block exosomal function to reduce the proliferation of cancer cells.

View Article and Find Full Text PDF

Manoalide provides preferential antiproliferation of oral cancer but is non-cytotoxic to normal cells by modulating reactive oxygen species (ROS) and apoptosis. Although ROS interplays with endoplasmic reticulum (ER) stress and apoptosis, the influence of ER stress on manoalide-triggered apoptosis has not been reported. The role of ER stress in manoalide-induced preferential antiproliferation and apoptosis was assessed in this study.

View Article and Find Full Text PDF

Many miRNAs are known to target the AKT serine-threonine kinase (AKT) pathway, which is critical for the regulation of several cell functions in cancer cell development. Many natural products exhibiting anticancer effects have been reported, but their connections to the AKT pathway (AKT and its effectors) and miRNAs have rarely been investigated. This review aimed to demarcate the relationship between miRNAs and the AKT pathway during the regulation of cancer cell functions by natural products.

View Article and Find Full Text PDF

Cancer-derived exosomes exhibit sophisticated functions, such as proliferation, apoptosis, migration, resistance, and tumor microenvironment changes. Several clinical drugs modulate these exosome functions, but the impacts of natural products are not well understood. Exosome functions are regulated by exosome processing, such as secretion and assembly.

View Article and Find Full Text PDF

Physapruin A (PHA), a -derived withanolide, exhibits antiproliferation activity against oral and breast cancer cells. However, its potential antitumor effects in combined treatments remain unclear. This investigation focused on evaluating the impact of the combined treatment of ultraviolet-C with PHA (UVC/PHA) on the proliferation of oral cancer cells.

View Article and Find Full Text PDF
Article Synopsis
  • A novel compound, SK1, was developed previously, but its anticancer effects and role in oxidative stress were not assessed until now.
  • The study found that SK1 significantly reduces the growth of oral cancer cells compared to normal cells, and this effect is influenced by oxidative stress, as reversed by the antioxidant -acetylcysteine (NAC).
  • SK1 caused higher levels of oxidative stress, apoptosis, and DNA damage in oral cancer cells, suggesting that it may be a potential treatment targeting oxidative stress in cancer therapy.
View Article and Find Full Text PDF

Oxidative stress and AKT serine-threonine kinase (AKT) are responsible for regulating several cell functions of cancer cells. Several natural products modulate both oxidative stress and AKT for anticancer effects. However, the impact of natural product-modulating oxidative stress and AKT on cell functions lacks systemic understanding.

View Article and Find Full Text PDF

Combined treatment is a promising anticancer strategy for improving antiproliferation compared with a single treatment but is limited by adverse side effects on normal cells. Fucoidan (FN), a brown-algae-derived polysaccharide safe food ingredient, exhibits preferential function for antiproliferation to oral cancer but not normal cells. Utilizing the preferential antiproliferation, the impacts of FN in regulating ultraviolet C (UVC) irradiation were assessed in oral cancer cells.

View Article and Find Full Text PDF

Antiproliferation effects of -derived natural products against cancer cells have been reported on, but most studies have focused on identifying bioactive compounds, lacking a detailed investigation of the molecular mechanism. Crude extracts generally exhibit multiple targeting potentials for anticancer effects, but they have rarely been assessed for methanol extracts of (MECI). This investigation aims to evaluate the antiproliferation of MECI and to examine several potential mechanisms between oral cancer and normal cells.

View Article and Find Full Text PDF

The selective antiproliferation to oral cancer cells of -derived physapruin A (PHA) is rarely reported. Either drug-induced apoptosis and DNA damage or DNA repair suppression may effectively inhibit cancer cell proliferation. This study examined the selective antiproliferation ability of PHA and explored detailed mechanisms of apoptosis, DNA damage, and repair.

View Article and Find Full Text PDF

Combined treatment is an effective strategy to improve anticancer therapy, but severe side effects frequently limit this application. Drugs inhibiting the proliferation of cancer cells, but not normal cells, display preferential antiproliferation to cancer cells. It shows the benefits of avoiding side effects and enhancing antiproliferation for combined treatment.

View Article and Find Full Text PDF

SK2, a nitrated [6,6,6]tricycle derivative with an -butyloxy group, showed selective antiproliferation effects on oral cancer but not on normal oral cells. This investigation assessed for the first time the synergistic antiproliferation potential of cisplatin/SK2 in oral cancer cells. Cell viability assay at 24 h showed that a low dose of combined cisplatin/SK2 (10 μM/10 μg/mL) provided more antiproliferation than cisplatin or SK2 alone.

View Article and Find Full Text PDF