Introduction: Cement distribution pattern following unipedicle percutaneous vertebroplasty (UVP) for osteoporotic vertebral compression fractures (OVCFs) has been reported in association with clinical results. The present retrospective study aimed to classify the bone cement distribution types following UVP and investigate the differences in clinical efficacy and related complications.
Materials And Methods: We retrospectively reviewed the medical records of the patients with single-segment OVCFs who underwent UVP.
Study Design: Retrospective.
Objective: To evaluate the clinical and radiographical results.
Summary Of Background Data: The evolution of posterior approach for burst fractures was from long-segment to short-segment and then to monosegmental fixation.
Introduction: Synovial macrophages, which can release proinflammatory factors, are responsible for the upregulation of cartilage-breakdown proteases and play critical roles in cartilage degradation during the progression of osteoarthritis (OA). In addition, shear stress exerts multifunctional effects on chondrocytes by inducing the synthesis of catabolic or anabolic genes. However, the interplay of macrophages, chondrocytes, and shear stress during the regulation of cartilage function remains poorly understood.
View Article and Find Full Text PDFBackground: Multiple osteoporotic vertebral compression fractures (VCFs) have been treated with polymethylmethacrylate augmentation; however, there are cement complications and long-term fracture healing that are unknown. Transpedicle body augmenter (a porous titanium spacer) has been reported as an internal support to reconstruct the vertebral body combining short-segment fixation in burst fracture and Kümmell's disease with cord compression. Transpedicle body augmenter for vertebral augmentation (TpBA) also has been reported successfully in treating single painful VCF and vertebral metastasis lesions including pending fractures and pathologic compression fractures.
View Article and Find Full Text PDFIndian J Orthop
October 2007
Background: Short-segment fixation alone to treat thoracolumbar burst fractures is common but it has a 20-50% incidence of implant failure and rekyphosis. A transpedicle body augmenter (TpBA) to reinforce the vertebral body via posterior approach has been reported to prevent implant failure and increase the clinical success rate in treating burst fracture. This article is to evaluate the longterm results of short-segment fixation with TpBA for treatment of thoracolumbar burst fractures.
View Article and Find Full Text PDFSpine (Phila Pa 1976)
October 2006
Study Design: Transpedicle body augmenter vertebroplasty of painful vertebral tumor was retrospectively evaluated.
Objective: Transpedicle body augmenter vertebroplasty was designed to treat spinal tumor with intractable pain refractory to conservative management, deformity, biomechanical impairment, and neural deficits.
Summary Of Background Data: Chemotherapy, hormonal therapy, and radiation therapy cannot restore spinal stability.
Osteoporotic compression fractures (VCFs) can result in progressive kyphosis and chronic pain. Polymethylmethacrylate has been used for augmentation of VCFs; however, there are cement complications, and long-term fracture healing is unknown. The transpedicle body augmenter (TpBA), a porous titanium spacer, has been reported as an internal support to reconstruct the vertebral body combining short segment fixation in burst fracture.
View Article and Find Full Text PDFThe efficiency of short-segment fixation with transpedicle body augmenter (a titanium spacer with bone-ingrowth porous surface, TpBA) to treat Kümmell's disease with cord compression (stage III) was retrospectively evaluated. No laminectomy or instrumentation reduction was done. Inclusion criteria included Frankel CDE, single-level within T10-L2.
View Article and Find Full Text PDF