Publications by authors named "Chi-Ping Chan"

Type 2 diabetes mellitus and metabolic dysfunction-associated steatotic liver disease (MASLD) are interrelated metabolic disorders that pose significant health concerns. Hepatokines and other regulatory factors implicated in these diseases are incompletely understood. Here, we report on a new hepatokine named cell growth regulator with EF-hand domain 1 (Cgref1) that modulates lipid metabolism to aggravate these conditions.

View Article and Find Full Text PDF

Background: Live attenuated vaccines against SARS-CoV-2 activate all phases of host immunity resembling a natural infection and they block viral transmission more efficiently than existing vaccines in human use. In our prior work, we characterised an attenuated SARS-CoV-2 variant, designated d16, which harbours a D130A mutation in the NSP16 protein, inactivating its 2'-O-methyltransferase function. The d16 variant has demonstrated an ability to induce both mucosal and sterilising immunity in animal models.

View Article and Find Full Text PDF

Exactly why human infection of avian influenza A virus H7N9 causes more severe disease in the elderly remains elusive. In this study, we found that H7N9 PB1-F2 is a pathogenic factor in 15-18-month-old BALB/C mice (aged mice) but not in 6-8-week-old young adult mice (young mice). Recombinant influenza A virus with H7N9 PB1-F2-knockout was less pathogenic in aged mice as indicated with delayed weight loss.

View Article and Find Full Text PDF

Unlabelled: SARS-CoV-2, the causative agent of COVID-19, has been intensely studied in search of effective antiviral treatments. The immunosuppressant cyclosporine A (CsA) has been suggested to be a pan-coronavirus inhibitor, yet its underlying mechanism remained largely unknown. Here, we found that non-structural protein 1 (Nsp1) of SARS-CoV-2 usurped CsA-suppressed nuclear factor of activated T cells (NFAT) signaling to drive the expression of cellular DEAD-box helicase 5 (DDX5), which facilitates viral replication.

View Article and Find Full Text PDF

Members of the serine-arginine protein kinase (SRPK) family, SRPK1 and SRPK2, phosphorylate the hepatitis B core protein (Cp) and are crucial for pregenomic RNA encapsidation during viral nucleocapsid assembly. Among them, SRPK2 exhibits higher kinase activity toward Cp. In this study, we identified Cp sites that are phosphorylated by SRPK2 and demonstrated that the kinase utilizes an SRPK-specific docking groove to interact with and regulate the phosphorylation of the C-terminal arginine rich domain of Cp.

View Article and Find Full Text PDF

Background: Cholesterol plays a vital role in multiple physiological processes. Cellular uptake of cholesterol is mediated primarily through endocytosis of low-density lipoprotein (LDL) receptor. New modifiers of this process remain to be characterized.

View Article and Find Full Text PDF

Expression of genes of interest from plasmids or lentiviral vectors is one of the most common tools in molecular and gene therapy. Aberrant splicing between the inserted gene of interest and downstream vector sequence has not been systematically analyzed. Formation of aberrant fusion transcripts and proteins was detected by RT-PCR, sequencing, Western blotting and mass spectrometry.

View Article and Find Full Text PDF

Single-cycle infectious virus can elicit close-to-natural immune response and memory. One approach to generate single-cycle severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is through deletion of structural genes such as spike (S) and nucleocapsid (N). Transcomplementation of the resulting ΔS or ΔN virus through enforced expression of S or N protein in the cells gives rise to a live but unproductive virus.

View Article and Find Full Text PDF

Background & Aims: CREB-H is a key liver-enriched transcription factor governing lipid metabolism. Additional targets of CREB-H remain to be identified and characterized. Here, we identified a novel fasting- and CREB-H-induced (FACI) protein that inhibits intestinal lipid absorption and alleviates diet-induced obesity in mice.

View Article and Find Full Text PDF

Sensing of pathogen-associated molecular patterns including viral RNA by innate immunity represents the first line of defense against viral infection. In addition to RIG-I-like receptors and NOD-like receptors, several other RNA sensors are known to mediate innate antiviral response in the cytoplasm. Double-stranded RNA-binding protein PACT interacts with prototypic RNA sensor RIG-I to facilitate its recognition of viral RNA and induction of host interferon response, but variations of this theme are seen when the functions of RNA sensors are modulated by other RNA-binding proteins to impinge on antiviral defense, proinflammatory cytokine production and cell death programs.

View Article and Find Full Text PDF

In February 2020, we highlighted the top nine important research questions on SARS-CoV-2 and COVID-19 concerning virus transmission, asymptomatic and presymptomatic virus shedding, diagnosis, treatment, vaccine development, origin of virus and viral pathogenesis. These and related questions are revisited at the end of 2021 to shed light on the roadmap of bringing an end to the pandemic.

View Article and Find Full Text PDF

Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic human coronavirus causing severe disease and mortality. MERS-CoV infection failed to elicit robust IFN response, suggesting that the virus might have evolved strategies to evade host innate immune surveillance. In this study, we identified and characterized type I IFN antagonism of MERS-CoV open reading frame (ORF) 8b accessory protein.

View Article and Find Full Text PDF

Human infection with avian influenza A (H5N1) and (H7N9) viruses causes severe respiratory diseases. PB1-F2 protein is a critical virulence factor that suppresses early type I interferon response, but the mechanism of its action in relation to high pathogenicity is not well understood. Here we show that PB1-F2 protein of H7N9 virus is a particularly potent suppressor of antiviral signaling through formation of protein aggregates on mitochondria and inhibition of TRIM31-MAVS interaction, leading to prevention of K63-polyubiquitination and aggregation of MAVS.

View Article and Find Full Text PDF

Infection with seasonal as well as highly pathogenic avian influenza A virus (IAV) causes significant morbidity and mortality worldwide. As a major virulence factor, PB1-F2 protein of IAV affects the severity of disease through multiple mechanisms including perturbation of host innate immune response. Macrophages are known to phagocytose extracellular PB1-F2 protein aggregate, leading to hyperactivation of NLRP3 inflammasome and excessive production of IL-1β and IL-18.

View Article and Find Full Text PDF

Influenza A virus (IAV) causes not only seasonal respiratory illness, but also outbreaks of more severe disease and pandemics when novel strains emerge as a result of reassortment or interspecies transmission. PB1-F2 is an IAV protein expressed from the second open reading frame of PB1 gene. Small as it is, PB1-F2 is a critical virulence factor.

View Article and Find Full Text PDF

Mutation and adaptation have driven the co-evolution of coronaviruses (CoVs) and their hosts, including human beings, for thousands of years. Before 2003, two human CoVs (HCoVs) were known to cause mild illness, such as common cold. The outbreaks of severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) have flipped the coin to reveal how devastating and life-threatening an HCoV infection could be.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an ongoing global health emergency. Here we highlight nine most important research questions concerning virus transmission, asymptomatic and presymptomatic virus shedding, diagnosis, treatment, vaccine development, origin of virus and viral pathogenesis.

View Article and Find Full Text PDF

World Health Organization has declared the ongoing outbreak of coronavirus disease 2019 (COVID-19) a Public Health Emergency of International Concern. The virus was named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the International Committee on Taxonomy of Viruses. Human infection with SARS-CoV-2 leads to a wide range of clinical manifestations ranging from asymptomatic, mild, moderate to severe.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus (SARS-CoV) is capable of inducing a storm of proinflammatory cytokines. In this study, we show that the SARS-CoV open reading frame 3a (ORF3a) accessory protein activates the NLRP3 inflammasome by promoting TNF receptor-associated factor 3 (TRAF3)-mediated ubiquitination of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). SARS-CoV and its ORF3a protein were found to be potent activators of pro-IL-1β gene transcription and protein maturation, the 2 signals required for activation of the NLRP3 inflammasome.

View Article and Find Full Text PDF

Mouse p202 is a disease locus for lupus and a dominant-negative inhibitor of AIM2 inflammasome activation. A human homolog of p202 has not been identified so far. Here, we report a novel transcript isoform of human IFI16-designated IFI16-β, which has a domain architecture similar to that of mouse p202.

View Article and Find Full Text PDF

STING is a core adaptor in innate nucleic acid sensing in mammalian cells, on which different sensing pathways converge to induce type I interferon (IFN) production. Particularly, STING is activated by 2'3'-cGAMP, a cyclic dinucleotide containing mixed phosphodiester linkages and produced by cytoplasmic DNA sensor cGAS. Here, we reported on a novel transcript isoform of STING designated STING-β that dominantly inhibits innate nucleic acid sensing.

View Article and Find Full Text PDF

PACT is a double-stranded RNA-binding protein that has been implicated in host-influenza A virus (IAV) interaction. PACT facilitates the action of RIG-I in the activation of the type I IFN response, which is suppressed by the viral nonstructural protein NS1. PACT is also known to interact with the IAV RNA polymerase subunit PA.

View Article and Find Full Text PDF

CRTCs are a group of three transcriptional coactivators required for CREB-dependent transcription. CREB and CRTCs are critically involved in the regulation of various biological processes such as cell proliferation, metabolism, learning and memory. However, whether CRTC1 efficiently induces gluconeogenic gene expression and how CRTC1 is regulated by upstream kinase SIK1 remain to be understood.

View Article and Find Full Text PDF