More than half of diabetic wounds demonstrate clinical signs of infection at presentation and lead to poor outcomes. This work develops coaxial sheath-core nanofibrous poly(lactide--glycolide) (PLGA) scaffolds that are loaded with bioactive antibiotics and platelet-derived growth factor (PDGF) for the repair of diabetic infectious wounds. PDGF and PLGA/antibiotic solutions were pumped, respectively, into two independent capillary tubings for coaxial electrospinning to prepare biodegradable sheath-core nanofibers.
View Article and Find Full Text PDFInt J Nanomedicine
November 2018
Objective: The current treatment of atherosclerotic coronary heart disease with limus-eluting stents can lead to incomplete endothelialization and substantial impairment of arterial healing relative to treatment with bare-metal stents. The sustained and local delivery of ticagrelor, a reversibly binding P2Y12 receptor inhibitor, using hybrid biodegradable nanofibers/stents, was developed to reduce neointimal formation and endothelial dysfunction.
Methods: In this investigation, a solution of ticagrelor, poly(D,L)-lactide-co-glycolide, and hexafluoro isopropanol was electrospun to fabricate ticagrelor-eluting nanofibrous drug-eluting stents.