Publications by authors named "Chase D Mendenhall"

Humans have been driving a global erosion of species richness for millennia, but the consequences of past extinctions for other dimensions of biodiversity-functional and phylogenetic diversity-are poorly understood. In this work, we show that, since the Late Pleistocene, the extinction of 610 bird species has caused a disproportionate loss of the global avian functional space along with ~3 billion years of unique evolutionary history. For island endemics, proportional losses have been even greater.

View Article and Find Full Text PDF

Anthropogenic activities have reshaped biodiversity on islands worldwide. However, it remains unclear how island attributes and land-use change interactively shape multiple facets of island biodiversity through community assembly processes. To answer this, we conducted bird surveys in various land-use types (mainly forest and farmland) using transects on 34 oceanic land-bridge islands in the largest archipelago of China.

View Article and Find Full Text PDF

Research on island species-area relationships (ISAR) has expanded to incorporate functional (IFDAR) and phylogenetic (IPDAR) diversity. However, relative to the ISAR, we know little about IFDARs and IPDARs, and lack synthetic global analyses of variation in form of these three categories of island diversity-area relationship (IDAR). Here, we undertake the first comparative evaluation of IDARs at the global scale using 51 avian archipelagic data sets representing true and habitat islands.

View Article and Find Full Text PDF

Climate change threatens biodiversity in a range of ways, including changing animal body sizes. Despite numerous examples of size declines related to increasing temperatures, patterns of size change are not universal, suggesting that one or more primary mechanisms impacting size change are unknown. Precipitation is likely to influence the size different from and in conjunction with changes in temperature, yet tests of the interaction between these variables are rare.

View Article and Find Full Text PDF

Wind is a critical factor in the ecology of pollinating insects such as bees. However, the role of wind in determining patterns of bee abundance and floral visitation rates across space and time is not well understood. Orchid bees are an important and diverse group of neotropical pollinators that harvest pollen, nectar and resin from plants.

View Article and Find Full Text PDF

Tropical agriculture is a major driver of biodiversity loss, yet it can provide conservation opportunities, especially where protected areas are inadequate. To investigate the long-term biodiversity capacity of agricultural countryside, we quantified bird population trends in Costa Rica by mist netting 57,255 birds of 265 species between 1999 and 2010 in sun coffee plantations, riparian corridors, secondary forests, forest fragments, and primary forest reserves. More bird populations (69) were declining than were stable (39) or increasing (4).

View Article and Find Full Text PDF

Anthropogenic land use change is an important driver of impacts to biological communities and the ecosystem services they provide. Pollination is one ecosystem service that may be threatened by community disassembly. Relatively little is known about changes in bee community composition in the tropics, where pollination limitation is most severe and land use change is rapid.

View Article and Find Full Text PDF

If species' evolutionary pasts predetermine their responses to evolutionarily novel stressors, then phylogeny could predict species survival in an increasingly human-dominated world. To understand the role of phylogenetic relatedness in structuring responses to rapid environmental change, we focused on assemblages of Neotropical bats, an ecologically diverse and functionally important group. We examined how taxonomic and phylogenetic diversity shift between tropical forest and farmland.

View Article and Find Full Text PDF

Decision-makers increasingly seek scientific guidance on investing in nature, but biodiversity remains difficult to estimate across diverse landscapes. Here, we develop empirically based models for quantifying biodiversity across space. We focus on agricultural lands in the tropical forest biome, wherein lies the greatest potential to conserve or lose biodiversity.

View Article and Find Full Text PDF

While anthropogenic impacts on parasitism of wildlife are receiving growing attention, whether these impacts vary in a sex-specific manner remains little explored. Differences between the sexes in the effect of parasites, linked to anthropogenic activity, could lead to uneven sex ratios and higher population endangerment. We sampled 1108 individual bats in 18 different sites across an agricultural mosaic landscape in southern Costa Rica to investigate the relationships between anthropogenic impacts (deforestation and reductions in host species richness) and bat fly ectoparasitism of 35 species of Neotropical bats.

View Article and Find Full Text PDF

Diverse motivations for preserving nature both inspire and hinder its conservation. Optimal conservation strategies may differ radically depending on the objective. For example, creating nature reserves may prevent extinctions through protecting severely threatened species, whereas incentivizing farmland hedgerows may benefit people through bolstering pest-eating or pollinating species.

View Article and Find Full Text PDF

Habitat conversion is the primary driver of biodiversity loss, yet little is known about how it is restructuring the tree of life by favoring some lineages over others. We combined a complete avian phylogeny with 12 years of Costa Rican bird surveys (118,127 detections across 487 species) sampled in three land uses: forest reserves, diversified agricultural systems, and intensive monocultures. Diversified agricultural systems supported 600 million more years of evolutionary history than intensive monocultures but 300 million fewer years than forests.

View Article and Find Full Text PDF

The future of biodiversity and ecosystem services depends largely on the capacity of human-dominated ecosystems to support them, yet this capacity remains largely unknown. Using the framework of countryside biogeography, and working in the Las Cruces system of Coto Brus, Costa Rica, we assessed reptile and amphibian assemblages within four habitats that typify much of the Neotropics: sun coffee plantations (12 sites), pasture (12 sites), remnant forest elements (12 sites), and a larger, contiguous protected forest (3 sites in one forest). Through analysis of 1678 captures of 67 species, we draw four primary conclusions.

View Article and Find Full Text PDF

The equilibrium theory of island biogeography is the basis for estimating extinction rates and a pillar of conservation science. The default strategy for conserving biodiversity is the designation of nature reserves, treated as islands in an inhospitable sea of human activity. Despite the profound influence of islands on conservation theory and practice, their mainland analogues, forest fragments in human-dominated landscapes, consistently defy expected biodiversity patterns based on island biogeography theory.

View Article and Find Full Text PDF

Birds both promote and prosper from forest restoration. The ecosystem functions birds perform can increase the pace of forest regeneration and, correspondingly, increase the available habitat for birds and other forest-dependent species. The aim of this study was to learn how tropical forest restoration treatments interact with landscape tree cover to affect the structure and composition of a diverse bird assemblage.

View Article and Find Full Text PDF

Efforts to maximise crop yields are fuelling agricultural intensification, exacerbating the biodiversity crisis. Low-intensity agricultural practices, however, may not sacrifice yields if they support biodiversity-driven ecosystem services. We quantified the value native predators provide to farmers by consuming coffee's most damaging insect pest, the coffee berry borer beetle (Hypothenemus hampei).

View Article and Find Full Text PDF

Globally, most restoration efforts focus on re-creating the physical structure (flora or physical features) of a target ecosystem with the assumption that other ecosystem components will follow. Here we investigate that assumption by documenting biogeographical patterns in an important invertebrate taxon, the parasitoid wasp family Ichneumonidae, in a recently reforested Hawaiian landscape. Specifically, we test the influence of (1) planting configurations (corridors versus patches), (2) vegetation age, (3) distance from mature native forest, (4) surrounding tree cover, and (5) plant community composition on ichneumonid richness, abundance, and composition.

View Article and Find Full Text PDF

Growing demand for food, fuel, and fiber is driving the intensification and expansion of agricultural land through a corresponding displacement of native woodland, savanna, and shrubland. In the wake of this displacement, it is clear that farmland can support biodiversity through preservation of important ecosystem elements at a fine scale. However, how much biodiversity can be sustained and with what tradeoffs for production are open questions.

View Article and Find Full Text PDF