Publications by authors named "Charlotte Le Mouel"

During walking and running, animals display rich and coordinated motor patterns that are generated and controlled within the central nervous system. Previous computational and experimental results suggest that the balance between excitation and inhibition in neural circuits may be critical for generating such structured motor patterns. In this paper, we explore the influence of this balance on the ability of a reservoir computing artificial neural network to learn human locomotor patterns, using mean-field theory and simulations.

View Article and Find Full Text PDF

The objective of this systematic review is to identify motion analysis parameters measured during challenging walking tasks which can predict fall risk in the older population. Numerous studies have attempted to predict fall risk from the motion analysis of standing balance or steady walking. However, most falls do not occur during steady gait but occur due to challenging centre of mass displacements or environmental hazards resulting in slipping, tripping or falls on stairs.

View Article and Find Full Text PDF

It is currently unclear if damping plays a functional role in legged locomotion, and simple models often do not include damping terms. We present a new model with a damping term that is isolated from other parameters: that is, the damping term can be adjusted without retuning other model parameters for nominal motion. We systematically compare how increased damping affects stability in the face of unexpected ground-height perturbations.

View Article and Find Full Text PDF

External perturbation forces may compromise standing balance. The nervous system can intervene only after a delay greater than 100 ms, during which the body falls freely. With ageing, sensorimotor delays are prolonged, posing a critical threat to balance.

View Article and Find Full Text PDF

Background: In numerous laboratory-based perturbation experiments, differences in the balance recovery performance of elderly fallers and non-fallers are moderate or absent. This performance may be affected by the subjects adjusting their initial posture in anticipation of the perturbation.

Research Questions: Do elderly fallers and non-fallers adjust their posture in anticipation of externally-imposed perturbations in a laboratory setting? How does this impact their balance recovery performance?

Methods: 21 elderly non-fallers, 18 age-matched elderly fallers and 11 young adults performed both a forward waist-pull perturbation task and a Choice Stepping Reaction Time (CSRT) task.

View Article and Find Full Text PDF

Counteracting the destabilizing force of gravity is usually considered to be the main purpose of postural control. However, from the consideration of the mechanical requirements for movement, we argue that posture is adjusted in view of providing impetus for movement. Thus, we show that the posture that is usually adopted in quiet standing in fact allows torque for potential movement.

View Article and Find Full Text PDF

Learning to categorise sensory inputs by generalising from a few examples whose category is precisely known is a crucial step for the brain to produce appropriate behavioural responses. At the neuronal level, this may be performed by adaptation of synaptic weights under the influence of a training signal, in order to group spiking patterns impinging on the neuron. Here we describe a framework that allows spiking neurons to perform such "supervised learning", using principles similar to the Support Vector Machine, a well-established and robust classifier.

View Article and Find Full Text PDF