Spatially arranged molecular catalysts in polymeric frameworks, typically in a layered structure, are emerging strategies to mitigate the molecular aggregation and improve the catalytic performance. However, the effect of local coordination induced by polymerization remains underexplored. Here, we develop one-dimensional cobalt-tetra-amino-phthalocyanine-based covalent organic polymers (1D-COP) for the electrochemical CO reduction reaction (CORR).
View Article and Find Full Text PDFAutomating electrochemical analyses combined with artificial intelligence is poised to accelerate discoveries in renewable energy sciences and technologies. This study presents an automated high-throughput electrochemical characterization (AHTech) platform as a cost-effective and versatile tool for rapidly assessing liquid analytes. The Python-controlled platform combines a liquid handling robot, potentiostat, and customizable microelectrode bundles for diverse, reproducible electrochemical measurements in microtiter plates, minimizing chemical consumption and manual effort.
View Article and Find Full Text PDFWe have developed a class of phosphido-boranes (BoPh's) with formula X[RPBH] that bind CO with exceptional strength (Δ = -8.2 to -24.0 kcal/mol) at ambient conditions.
View Article and Find Full Text PDFIt is imperative to develop efficient CO capture and activation technologies to combat the rising levels of deleterious greenhouse gases in the atmosphere. Using Quantum Mechanics methods (Density Functional Theory), we propose and evaluate several metal-free and metal-containing phosphines that provide strong CO binding under ambient conditions. Depending on the electron donating capacity of the phosphine and the ability of the P-bound ligands to hydrogen bond to the CO, we find that the CO binding can be as strong as -18.
View Article and Find Full Text PDF