The performance of the electrocatalytic CO reduction reaction (CORR) is highly dependent on the microenvironment around the cathode. Despite efforts to optimize the microenvironment by modifying nanostructured catalysts or microporous gas diffusion electrodes, their inherent disorder presents a significant challenge to understanding how interfacial structure arrangement within the electrode governs the microenvironment for CORR. This knowledge gap limits fundamental understanding of CORR while also hindering efforts to enhance CORR selectivity and activity.
View Article and Find Full Text PDFThe emerging transition metal-nitrogen-carbon (MNC) materials are considered as a promising oxygen reduction reaction (ORR) catalyst system to substitute expensive Pt/C catalysts due to their high surface area and potential high catalytic activity. However, MNC catalysts are easy to be attacked by the ORR byproducts that easily lead to the deactivation of metal active sites. Moreover, a high metal loading affects the mass transfer and stability, but a low loading delivers inferior catalytic activity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2021
As an important basic material of electronic equipment, copper (Cu) foils should have a small thickness, good mechanical properties, and excellent thermal conductivity. However, preparing an ultrathin Cu foil with good properties remains challenging. Herein, we report an electroless deposition (ELD) strategy for the facile and scalable preparation of an ultrathin freestanding nickel-coated graphene (NCG)/Cu composite foil in a short time of 25 min.
View Article and Find Full Text PDFTungsten-copper (W-Cu) composites are widely used as electrical contact materials, resistance welding, electrical discharge machining (EDM), and plasma electrode materials due to their excellent arc erosion resistance, fusion welding resistance, high strength, and superior hardness. However, the traditional preparation methods pay little attention to the compactness and microstructural uniformity of W-Cu composites. Herein, W-Cu composite coatings are prepared by pulse electroplating using nano-W powder as raw material and the influence of forward-reverse duty cycle of pulse current on the structure and mechanical properties is systematically investigated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2020
Electroless deposition (ELD) is a process widely used for the production of thin metal films, but stripping the films from the substrate remains challenging. Here, we report a low-cost ELD method for the large-scale production of freestanding copper (Cu) foils in a short time of 25-55 min. By atomizing a thin (<100 nm) sacrificial layer of chitosan with weak glycosyl bonds and a high degree of deacetylation on the glass substrate, the chitosan is completely decomposed in the process of Cu-deposition, producing automatically shedded Cu foils with varied thicknesses from 746 nm to 8.
View Article and Find Full Text PDF