Developing efficient and stable heterogeneous catalysts for the continuous activation of oxidants is crucial to mitigating the global water resource crisis. Guided by computational predictions, this research achieved this goal through the synthesis of a modified graphitic carbon nitride with enhanced catalytic activity and stability. Its intrinsic activity was further amplified by dynamic in-situ reconstruction using the I/I redox mediator system during photoreactions.
View Article and Find Full Text PDFSingle-atom catalysts (SACs) are emerging as potent tools for the selective regulation of active species, offering substantial promise for green and sustainable Fenton catalysis. However, current SACs face limitations due to the specificity of their supports, which only allow selective regulation within certain oxidant systems. This constraint makes targeted regulation across different systems challenging.
View Article and Find Full Text PDFSingle-atom catalysts (SACs) have been increasingly acknowledged for their performance in sustainable Fenton-like catalysis. However, SACs face a trade-off between activity and stability in peroxymonosulfate (PMS)-based systems. Herein, we design a nano-island encapsulated single cobalt atom (Co-ZnO) catalyst to enhance the activity and stability of PMS activation for contaminant degradation via an "island-sea" synergistic effect.
View Article and Find Full Text PDFThe peroxone reaction, a promising alternative technology for water treatment, is traditionally hampered by its restricted pH operational range and suboptimal oxidant utilization. In this study, we introduced a novel amphoteric metal oxide (ZnO)-regulated peroxone system that transcended the pH limitations of conventional peroxone processes. Our innovative approach exploited the unique properties of ZnO to regulate the reaction pathway of the traditional O/HO (or peroxymonosulfate, PMS) processes, resulting in a 52.
View Article and Find Full Text PDFThe artificial photocatalytic synthesis based on graphitic carbon nitride (g-CN) for HO production is evolving rapidly. However, the simultaneous production of high-value products at electron and hole sites remains a great challenge. Here, we use transformable potassium iodide to obtain semi-crystalline g-CN integrated with the I/I redox shuttle mediators for efficient generation of HO and benzaldehyde.
View Article and Find Full Text PDFThe combination of ozone (O) and ferrate (Fe(VI)) oxidation technology demonstrates substantial potential for practical applications, though it has been underreported, resulting in gaps in comprehensive activity assessments and thorough exploration of its mechanisms. This study reveals that the previous use of a borate buffer solution obscured certain synergistic reactions between O and Fe(VI), causing a reduction of activity by ∼40 % when oxidizing the electron-deficient pollutant atrazine. Consequently, we reassessed the activity and mechanisms using a buffer-salt-free O/Fe(VI) system.
View Article and Find Full Text PDFArtificial photosynthesis using carbon nitride (g-CN) holds a great promise for sustainable and cost-effective HO production, but the high carrier recombination rate impedes its efficiency. To tackle this challenge, we propose an innovative method involving multispecies iodine mediators (I/I) intercalation through a pre-photo-oxidation process using potassium iodide (suspected deteriorated "KI") within the g-CN framework. Moreover, we introduce an external electric field by incorporating cationic methyl viologen ions to establish an auxiliary electron transfer channel.
View Article and Find Full Text PDFDeveloping eco-friendly and efficient technologies for treating antibiotic wastewater is crucial. Traditional methods face challenges in incomplete removal, high costs, and secondary pollution. Heterogeneous peroxymonosulfate (PMS) activation assisted by visible light shows promise, but suitable activators remain a huge challenge.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2024
In our quest to leverage the capabilities of the emerging single-atom catalysts (SACs) for wastewater purification, we confronted fundamental challenges related to electron scarcity and instability. Through meticulous theoretical calculations, we identified optimal placements for nitrogen vacancies (Nv) and iron (Fe) single-atom sites, uncovering a dual-site approach that significantly amplified visible-light absorption and charge transfer dynamics. Informed by these computational insights, we cleverly integrated Nv into the catalyst design to boost electron density around iron atoms, yielding a potent and flexible photoactivator for benign peracetic acid.
View Article and Find Full Text PDFIn the realm of wastewater treatment, the power of ferrate (Fe(VI)) and peracetic acid (PAA) as oxidants stands out. But their combined might is where the enhancement truly lies. Their collaborative effect intensifies, but the underlying mechanics, especially across varying pH levels and pollutant types, still lurks in obscurity.
View Article and Find Full Text PDFAntibiotic contaminants can migrate over long distances in the water, thus possibly causing severe detriment to the environment and even potential harm to human health. Heterogeneous activation of peroxymonosulfate (PMS) assisted by visible light is an emerging and promising technology for the purification of such wastewater. This study designed an ultra-efficient and stable PMS activator (FeCN) to restore the typical antibiotic-polluted water under harsh conditions.
View Article and Find Full Text PDF