Publications by authors named "Celine Montecot-Dubourg"

Health risks related to 900 MHz 2 G frequency exposure remain inconclusive under current regulatory standards. Research into potential long-term effects is ongoing, particularly as the use of mobile networks and wireless devices increases. This study investigates the effects of non-thermal exposure levels of mobile phone 900 MHz radiofrequency electromagnetic field (RF-EMF) on rodent neurodevelopment.

View Article and Find Full Text PDF

β-N-Methyl-Amino-L-Alanine (BMAA) produced by 95% of cyanobacteria is in constant augmentation with cyanobacteria worldwide proliferation due to global warming and eutrophication. Previously, it has been shown that this contaminant induced neurological disorders, notably by acting as a developmental toxin. However, very few studies focus on the impact of BMAA on neuroglial cells, like astrocytes and microglial cells, in a developmental context.

View Article and Find Full Text PDF

The globally used herbicide glufosinate-ammonium (GLA) is structurally analogous to the excitatory neurotransmitter glutamate, and is known to interfere with cellular mechanisms involved in the glutamatergic system. In this report, we used an in vitro model of murine primary neural stem cell culture to investigate the neurotoxicity of GLA and its main metabolite, 4-methylphosphinico-2-oxobutanoic acid (PPO). We demonstrated that GLA and PPO disturb ependymal wall integrity in the ventricular-subventricular zone (V-SVZ) and alter the neuro-glial differentiation of neural stem cells.

View Article and Find Full Text PDF

Fragile X Syndrome (FXS) is caused by a deficiency in Fragile X Mental Retardation Protein (FMRP) leading to global sensorial abnormalities, among which visual defects represent a critical part. These visual defects are associated with cerebral neuron immaturity especially in the primary visual cortex. However, we recently demonstrated that retinas of adult mice, the FXS murine model, present molecular, cellular and functional alterations.

View Article and Find Full Text PDF

Accumulating evidence suggests that developmental exposure to environmental chemicals may modify the course of brain development, ultimately leading to neuropsychiatric / neurodegenerative disorders later in life. In the present study, we assessed the impact of one of the most frequently used pesticides in both residential and agricultural applications - the synthetic pyrethroid cypermethrin (CYP) - on developmental neurotoxicity (DNT). Female mice were perinatally exposed to low doses of CYP (5 and 20 mg/kg body weight) from gestation to postnatal day 15.

View Article and Find Full Text PDF

Neurogenesis, a process of generating functional neurons from neural precursors, occurs throughout life in restricted brain regions such as the subventricular zone (SVZ). During this process, newly generated neurons migrate along the rostral migratory stream to the olfactory bulb to replace granule cells and periglomerular neurons. This neuronal migration is pivotal not only for neuronal plasticity but also for adapted olfactory based behaviors.

View Article and Find Full Text PDF

Glufosinate-ammonium (GLA), the active component of an herbicide, is known to cause neurotoxicity. GLA shares structural analogy with glutamate. It is a powerful inhibitor of glutamine synthetase (GS) and may bind to glutamate receptors.

View Article and Find Full Text PDF
Article Synopsis
  • - Glufosinate-ammonium (GLA) can cause severe seizures and high mortality in rodents, with notable effects on the limbic system and electroencephalographic changes.
  • - Diazepam, administered 6 hours post-GLA treatment, effectively halted seizures and prevented death, although intermittent seizures persisted for up to 24 hours.
  • - While there was no evident neuronal damage, significant astrocytic activation occurred after GLA exposure, suggesting that astrocytes may play a protective role for neurons during seizures.
View Article and Find Full Text PDF

Glufosinate ammonium (GLA) is one of the most widely used herbicides in agriculture. As is the case for most pesticides, potential adverse effects of GLA have not been studied from the perspective of developmental neurotoxicity. Early pesticides exposure may weaken the basic structure of the developing brain and cause permanent changes leading to a wide range of lifelong effects on health and/or behavior.

View Article and Find Full Text PDF

(13)C spectroscopy combined with the injection of (13)C-labeled substrates is a powerful method for the study of brain metabolism in vivo. Since highly localized measurements are required in a heterogeneous organ such as the brain, it is of interest to augment the sensitivity of (13)C spectroscopy by proton acquisition. Furthermore, as focal cerebral lesions are often encountered in animal models of disorders in which the two brain hemispheres are compared, we wished to develop a bi-voxel localized sequence for the simultaneous bilateral investigation of rat brain metabolism, with no need for external additional references.

View Article and Find Full Text PDF