Publications by authors named "Catherine Communal"

Slow progress in the fight against neurodegenerative diseases (NDs) motivates an urgent need for highly controlled in vitro systems to investigate organ-organ- and organ-immune-specific interactions relevant for disease pathophysiology. Of particular interest is the gut/microbiome-liver-brain axis for parsing out how genetic and environmental factors contribute to NDs. We have developed a mesofluidic platform technology to study gut-liver-cerebral interactions in the context of Parkinson's disease (PD).

View Article and Find Full Text PDF

Although the association between the microbiome and IBD and liver diseases is known, the cause and effect remain elusive. By connecting human microphysiological systems of the gut, liver, and circulating Treg and Th17 cells, we created a multi-organ model of ulcerative colitis (UC) ex vivo. The approach shows microbiome-derived short-chain fatty acids (SCFAs) to either improve or worsen UC severity, depending on the involvement of effector CD4 T cells.

View Article and Find Full Text PDF

Microphysiological systems (MPSs) are in vitro models that capture facets of in vivo organ function through use of specialized culture microenvironments, including 3D matrices and microperfusion. Here, we report an approach to co-culture multiple different MPSs linked together physiologically on re-useable, open-system microfluidic platforms that are compatible with the quantitative study of a range of compounds, including lipophilic drugs. We describe three different platform designs - "4-way", "7-way", and "10-way" - each accommodating a mixing chamber and up to 4, 7, or 10 MPSs.

View Article and Find Full Text PDF

Myocardial failure is associated with increased oxidative stress and abnormal excitation-contraction coupling characterized by depletion of sarcoplasmic reticulum (SR) Ca(2+) stores and a reduction in Ca(2+)-transient amplitude. Little is known about the mechanisms whereby oxidative stress affects Ca(2+) handling and contractile function; however, reactive thiols may be involved. We used an in vitro cardiomyocyte system to test the hypothesis that short-term oxidative stress induces SR Ca(2+) depletion via redox-mediated regulation of sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) and the sodium-Ca(2+) exchanger (NCX) and that this is associated with thiol oxidation.

View Article and Find Full Text PDF

Objective: Annexins are Ca(2+)-dependent phospholipid binding proteins. Externalized annexin A5 has been recently suggested to have a proapoptotic effect. Our aim was to determine whether annexin A5, which is intracellular in cardiomyocytes, could be translocated and/or externalized and play a role during the apoptotic process.

View Article and Find Full Text PDF

We have shown that the stimulation of beta-adrenergic receptors (beta-AR) increases apoptosis in adult rat ventricular myocytes (ARVMs). Integrins, a family of alphabeta-heterodimeric cell surface receptors, are postulated to play a role in ventricular remodeling. Here, we show that norepinephrine (NE) increases beta1 integrins expression in ARVMs via the stimulation of alpha1-AR, not beta-AR.

View Article and Find Full Text PDF

Background: Aging is an independent risk factor for the development of cardiovascular disease. Clinical application of myocardial gene transfer may be best suited in the elderly. In vivo gene transfer by adenovirus is less efficient in aging myocardium.

View Article and Find Full Text PDF

Stimulation of beta-adrenergic receptors (betaARs) causes apoptosis in adult rat ventricular myocytes (ARVMs). The role of reactive oxygen species (ROS) in mediating betaAR-stimulated apoptosis is not known. Stimulation of betaARs with norepinephrine (10 micromol/L) in the presence of prazosin (100 nmol/L) for 24 hours increased the number of apoptotic myocytes as determined by TUNEL staining by 3.

View Article and Find Full Text PDF

Background: Mitogen-activated protein kinases (MAPKs), consisting of the ERK1/2, JNKs, and p38-kinase families, play a key role in the regulation of myocyte growth and apoptosis in vitro. The activity of MAPKs is regulated by dual-specificity MAPK phosphatases (MKPs). Because myocardial failure is associated with myocyte hypertrophy and apoptosis, MAPKs may play a pathophysiologic role in human myocardial failure.

View Article and Find Full Text PDF

Cardiomyocyte apoptosis is present in many cardiac disease states, including heart failure and ischemic heart disease. Apoptosis is associated with the activation of caspases that mediate the cleavage of vital and structural proteins. However, the functional contribution of apoptosis to these conditions is not known.

View Article and Find Full Text PDF