Publications by authors named "Catharina Zich"

Background: Communication within brain networks depends on functional connectivity. One promising approach to modulate such connectivity between cortical areas is dual-site transcranial alternating current stimulation (tACS), which non-invasively applies weak alternating currents to two brain areas.

Objectives: In the current study, we aimed to modulate inter-regional functional connectivity with dual-site tACS to bilateral primary motor cortices (M1s) during bimanual coordination and, in turn, alter behaviour.

View Article and Find Full Text PDF

Gamma activity (γ, >30 Hz) is universally demonstrated across brain regions and species. However, the physiological basis and functional role of γ sub-bands (slow-γ, mid-γ, fast-γ) have been predominantly studied in rodent hippocampus; γ activity in the human neocortex is much less well understood. We use electrophysiology, non-invasive brain stimulation, and several motor tasks to examine the properties of sensorimotor γ activity sub-bands and their relationship with both local GABAergic activity and motor learning.

View Article and Find Full Text PDF

Movement-related dynamics in the beta and gamma bands have been studied in relation to motor execution and learning during unimanual movements, but their roles in complex bimanual tasks remain largely unexplored. This study aimed to investigate how beta and gamma activity differs between unimanual and bimanual movements and how these neural signatures evolve during the learning process. Our motor task incorporated varying levels of bimanual interaction: unimanual, bimanual-equal, and bimanual-unequal.

View Article and Find Full Text PDF

Motor imagery (MI) in combination with neurofeedback (NF) has emerged as a promising approach in motor neurorehabilitation, facilitating brain activity modulation and promoting motor learning. Although MI-NF has been demonstrated to enhance motor performance and cortical plasticity, its efficacy varies considerably across individuals. Various context factors have been identified as influencing neurophysiological outcomes in motor execution and MI, however, their specific impact on event-related desynchronization (ERD), a key neurophysiological marker in NF, remains insufficiently understood.

View Article and Find Full Text PDF

Improving outcomes after stroke depends on understanding both the causes of initial function/impairment and the mechanisms of recovery. Recovery in patients with initially low function/high impairment is variable, suggesting the factors relating to initial function/impairment are different to the factors important for subsequent recovery. Here we aimed to determine the contribution of altered brain structure and function to initial severity and subsequent recovery of the upper limb post-stroke.

View Article and Find Full Text PDF

Background: The spinal cord and its interactions with the brain are fundamental for movement control and somatosensation. However, brain and spinal electrophysiology in humans have largely been treated as distinct enterprises, in part due to the relative inaccessibility of the spinal cord. Consequently, there is a dearth of knowledge on human spinal electrophysiology, including the multiple pathologies that affect the spinal cord as well as the brain.

View Article and Find Full Text PDF

Motor recovery is still limited for people with stroke especially those with greater functional impairments. In order to improve outcome, we need to understand more about the mechanisms underpinning recovery. Task-unbiased, blood flow-independent post-stroke neural activity can be acquired from resting brain electrophysiological recordings and offers substantial promise to investigate physiological mechanisms, but behaviourally relevant features of resting-state sensorimotor network dynamics have not yet been identified.

View Article and Find Full Text PDF

The frequency spectrum is a central method for representing the dynamics within electrophysiological data. Some widely used spectrum estimators make use of averaging across time segments to reduce noise in the final spectrum. The core of this approach has not changed substantially since the 1960s, though many advances in the field of regression modelling and statistics have been made during this time.

View Article and Find Full Text PDF

Skill training aims to improve the performance of the task at hand and aims to transfer the acquired skill to related tasks. Both skill training and skill transfer are part of our everyday lives, and essential for survival, and their importance is reflected in years of research. Despite these enormous efforts, however, the complex relationship between skill training and skill transfer is not yet portrayed completely.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) can enhance motor and language rehabilitation after stroke. Though brain lesions distort tDCS-induced electric field (E-field), systematic accounts remain limited. Using electric field modelling, we investigated the effect of 630 synthetic lesions on E-field magnitude in the region of interest (ROI).

View Article and Find Full Text PDF

In humans, motor learning is underpinned by changes in sensorimotor network functional connectivity (FC). Unilateral contractions increase FC in the ipsilateral primary motor cortex (M1) and supplementary motor area (SMA); areas involved in motor planning and execution of the contralateral hand. Therefore, unilateral contractions are a promising approach to augment motor performance in the contralateral hand.

View Article and Find Full Text PDF

Beta oscillations in human sensorimotor cortex are hallmark signatures of healthy and pathological movement. In single trials, beta oscillations include bursts of intermittent, transient periods of high-power activity. These burst events have been linked to a range of sensory and motor processes, but their precise spatial, spectral, and temporal structure remains unclear.

View Article and Find Full Text PDF

Real-time functional MRI neurofeedback allows individuals to self-modulate their ongoing brain activity. This may be a useful tool in clinical disorders that are associated with altered brain activity patterns. Motor impairment after stroke has previously been associated with decreased laterality of motor cortex activity.

View Article and Find Full Text PDF

The direction of applied electric current relative to the cortical surface is a key determinant of transcranial direct current stimulation (tDCS) effects. Inter-individual differences in anatomy affect the consistency of current direction at a cortical target. However, the degree of this variability remains undetermined.

View Article and Find Full Text PDF

Many tasks require the skilled interaction of both hands, such as eating with knife and fork or keyboard typing. However, our understanding of the behavioural and neurophysiological mechanisms underpinning bimanual motor learning is still sparse. Here, we aimed to address this by first characterising learning-related changes of different levels of bimanual interaction and second investigating how beta tACS modulates these learning-related changes.

View Article and Find Full Text PDF

Motor imagery (MI) in combination with neurofeedback (NF) is a promising supplement to facilitate the acquisition of motor abilities and the recovery of impaired motor abilities following brain injuries. However, the ability to control MI NF is subject to a wide range of inter-individual variability. A substantial number of users experience difficulties in achieving good results, which compromises their chances to benefit from MI NF in a learning or rehabilitation context.

View Article and Find Full Text PDF

Real-time fMRI neurofeedback is an increasingly popular neuroimaging technique that allows an individual to gain control over his/her own brain signals, which can lead to improvements in behavior in healthy participants as well as to improvements of clinical symptoms in patient populations. However, a considerably large ratio of participants undergoing neurofeedback training do not learn to control their own brain signals and, consequently, do not benefit from neurofeedback interventions, which limits clinical efficacy of neurofeedback interventions. As neurofeedback success varies between studies and participants, it is important to identify factors that might influence neurofeedback success.

View Article and Find Full Text PDF

Social anxiety is prevalent in adolescence. Given its role in maintaining fears, reducing social avoidance through cognitive reappraisal may help attenuate social anxiety. We used fMRI-based neurofeedback (NF) to increase 'adaptive' patterns of negative connectivity between the dorsolateral prefrontal cortex (DLPFC) and the amygdala to change reappraisal ability, and alter social avoidance and approach behaviours in adolescents.

View Article and Find Full Text PDF

Increasing efforts are being made to understand the role of intermittent, transient, high-power burst events of neural activity. These events have a temporal, spectral, and spatial domain. Here, we argue that considering all three domains is crucial to fully reveal the functional relevance of these events in health and disease.

View Article and Find Full Text PDF

Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real-time fMRI neurofeedback studies report large inter-individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success.

View Article and Find Full Text PDF

Research has shown that difficulties with emotion regulation abilities in childhood and adolescence increase the risk for developing symptoms of mental disorders, e.g anxiety. We investigated whether functional magnetic resonance imaging (fMRI)-based neurofeedback (NF) can modulate brain networks supporting emotion regulation abilities in adolescent females.

View Article and Find Full Text PDF

Background: Dual transcranial direct current stimulation (tDCS) to the bilateral primary motor cortices (M1s) has potential benefits in chronic stroke, but its effects in subacute stroke, when behavioural effects might be expected to be greater, have been relatively unexplored. Here, we examined the neurophysiological effects and the factors influencing responsiveness of dual-tDCS in subacute stroke survivors.

Methods: We conducted a randomized sham-controlled crossover study in 18 survivors with first-ever, unilateral subcortical ischaemic stroke 2-4 weeks after stroke onset and 14 matched healthy controls.

View Article and Find Full Text PDF

Optimizing neurofeedback (NF) and brain-computer interface (BCI) implementations constitutes a challenge across many fields and has so far been addressed by, among others, advancing signal processing methods or predicting the user's control ability from neurophysiological or psychological measures. In comparison, how context factors influence NF/BCI performance is largely unexplored. We here investigate whether a competitive multi-user condition leads to better NF/BCI performance than a single-user condition.

View Article and Find Full Text PDF

For motor imagery (MI) to be effective, an internal representation of the to-be-imagined movement may be required. A representation can be achieved through prior motor execution (ME), but the neural correlates of MI that are primed by ME practice are currently unknown. In this study, young healthy adults performed MI practice of a unimanual visuo-motor task (Group , = 19) or ME practice combined with subsequent MI practice (Group , = 18) while electroencephalography (EEG) was recorded.

View Article and Find Full Text PDF