Glob Chang Biol
November 2024
Amplicon sequencing is an effective and increasingly applied method for studying viral communities in the environment. Here, we present vAMPirus, a user-friendly, comprehensive, and versatile DNA and RNA virus amplicon sequence analysis program, designed to support investigators in exploring virus amplicon sequencing data and running informed, reproducible analyses. vAMPirus intakes raw virus amplicon libraries and, by default, performs nucleotide- and amino acid-based analyses to produce results such as sequence abundance information, taxonomic classifications, phylogenies and community diversity metrics.
View Article and Find Full Text PDFUnderstanding how diversity evolves and is maintained is critical to predicting the future trajectories of ecosystems under climate change; however, our understanding of these processes is limited in marine systems. Corals, which engineer reef ecosystems, are critically threatened by climate change, and global efforts are underway to conserve and restore populations as attempts to mitigate ocean warming continue. Recently, sequencing efforts have uncovered widespread undescribed coral diversity, including 'cryptic lineages'-genetically distinct but morphologically similar coral taxa.
View Article and Find Full Text PDFViruses can affect coral health by infecting their symbiotic dinoflagellate partners (Symbiodiniaceae). Yet, viral dynamics in coral colonies exposed to environmental stress have not been studied at the reef scale, particularly within individual viral lineages. We sequenced the viral major capsid protein (mcp) gene of positive-sense single-stranded RNA viruses known to infect symbiotic dinoflagellates ('dinoRNAVs') to analyze their dynamics in the reef-building coral, Porites lobata.
View Article and Find Full Text PDFThe global decline of coral reefs heightens the need to understand how corals respond to changing environmental conditions. Corals are metaorganisms, so-called holobionts, and restructuring of the associated bacterial community has been suggested as a means of holobiont adaptation. However, the potential for restructuring of bacterial communities across coral species in different environments has not been systematically investigated.
View Article and Find Full Text PDFMany organisms are expanding their ranges in response to changing environmental conditions. Understanding the patterns of genetic diversity and adaptation along an expansion front is crucial to assessing a species' long-term success. While next-generation sequencing techniques can reveal these changes in fine detail, ascribing them to a particular species can be difficult for organisms that live in close association with symbionts.
View Article and Find Full Text PDFThe productivity of coral reefs in oligotrophic tropical waters is sustained by an efficient uptake and recycling of nutrients. In reef-building corals, the engineers of these ecosystems, this nutrient recycling is facilitated by a constant exchange of nutrients between the animal host and endosymbiotic photosynthetic dinoflagellates (zooxanthellae), bacteria, and other microbes. Due to the complex interactions in this so-called coral holobiont, it has proven difficult to understand the environmental limitations of productivity in corals.
View Article and Find Full Text PDF