Microbial systems have been synthetically engineered to deploy therapeutic payloads in vivo. With emerging evidence that bacteria naturally home in on tumours and modulate antitumour immunity, one promising application is the development of bacterial vectors as precision cancer vaccines. Here we engineered probiotic Escherichia coli Nissle 1917 as an antitumour vaccination platform optimized for enhanced production and cytosolic delivery of neoepitope-containing peptide arrays, with increased susceptibility to blood clearance and phagocytosis.
View Article and Find Full Text PDFBioengineered probiotics enable new opportunities to improve colorectal cancer (CRC) screening, prevention and treatment. Here, first, we demonstrate selective colonization of colorectal adenomas after oral delivery of probiotic E. coli Nissle 1917 (EcN) to a genetically-engineered murine model of CRC predisposition and orthotopic models of CRC.
View Article and Find Full Text PDFA major challenge facing tumor-antigen targeting therapies such as chimeric antigen receptor (CAR)-T cells is the identification of suitable targets that are specifically and uniformly expressed on heterogeneous solid tumors. By contrast, certain species of bacteria selectively colonize immune-privileged tumor cores and can be engineered as antigen-independent platforms for therapeutic delivery. To bridge these approaches, we developed a platform of probiotic-guided CAR-T cells (ProCARs), in which tumor-colonizing probiotics release synthetic targets that label tumor tissue for CAR-mediated lysis in situ.
View Article and Find Full Text PDFBioengineered probiotics enable new opportunities to improve colorectal cancer (CRC) screening, prevention and treatment strategies. Here, we demonstrate the phenomenon of selective, long-term colonization of colorectal adenomas after oral delivery of probiotic Nissle 1917 (EcN) to a genetically-engineered murine model of CRC predisposition. We show that, after oral administration, adenomas can be monitored over time by recovering EcN from stool.
View Article and Find Full Text PDFWith increasing evidence that microbes colonize tumors, synthetic biology tools are being leveraged to repurpose bacteria as tumor-specific delivery systems. These engineered systems can modulate the tumor microenvironment using a combination of their inherent immunogenicity and local payload production. Here, we review genetic circuits that enhance spatial and temporal control of therapeutic bacteria to improve their safety and efficacy.
View Article and Find Full Text PDFSci Transl Med
February 2020
Checkpoint inhibitors have revolutionized cancer therapy but only work in a subset of patients and can lead to a multitude of toxicities, suggesting the need for more targeted delivery systems. Because of their preferential colonization of tumors, microbes are a natural platform for the local delivery of cancer therapeutics. Here, we engineer a probiotic bacteria system for the controlled production and intratumoral release of nanobodies targeting programmed cell death-ligand 1 (PD-L1) and cytotoxic T lymphocyte-associated protein-4 (CTLA-4) using a stabilized lysing release mechanism.
View Article and Find Full Text PDF