Publications by authors named "Camilla Maria Braguglia"

The expansion of Anaerobic Digestion (AD) technology to turn food waste (FW) into biogas will influence the management of the associated compostable bio-based plastics disposed of in the organic fraction of municipal waste collection. Waste processing aspects and bio-based plastic biodegradation profile in anaerobic conditions need research. The fate of some commercially available compostable items made of thermoplastic starch or PLA-based blends was investigated, by performing lab-scale disposal phase and thermophilic AD, with the integration of a mild hydrothermal pretreatment.

View Article and Find Full Text PDF
Article Synopsis
  • - Researchers studied how mesophilic biomass adapts to lower temperatures in anaerobic digestion reactors, gradually reducing the temperature from 37°C to 15°C over 166 days while using wastewater with long chain fatty acids as feedstock.
  • - The acclimated biomass effectively removed over 75% of organic matter and more than 99% of long chain fatty acids, but the temperature drop resulted in decreased microbial diversity.
  • - Key findings included the dominance of specific bacteria, such as Smithella, during LCFA degradation, and the production of cellular solutes as a response to cold stress, providing valuable insights into microbial adaptation to psychrophilic conditions.
View Article and Find Full Text PDF

The biochemical valorization potential of food waste (FW) could be exploited by extracting decreasing added-value bio-based products and converting the final residues into energy. In this context, multi-purpose and versatile schemes integrating thermal and biochemical conversion processes will play a key role. An upstream thermal pretreatment + solid-liquid separation unit was here proposed to optimize the conversion of the liquid fraction of FW into valuable chemicals through semi-continuous fermentation process, and the conversion of the residual solid fraction into biomethane through anaerobic digestion.

View Article and Find Full Text PDF

The characterization of organic contaminants in sewage sludge is a fundamental step to address the relevant most appropriate management practice. In this perspective, C10-C40 hydrocarbon content was considered in Italy a crucial parameter to be considered, in spite of its irrelevance in the literature. The very complex mixture of organic substances of both biogenic and anthropogenic origin the sludge is made up of makes sewage sludge a matrix of uniqueness nature, and the analytic determination of hydrocarbon content through conventional procedures may be subjected to overestimation.

View Article and Find Full Text PDF

Facilitating the anaerobic degradation of long chain fatty acids (LCFA) is the key to unlock the energy potential of lipids-rich wastewater. In this study, the feasibility of psychrophilic anaerobic treatment of LCFA-containing dairy wastewater was assessed and compared to mesophilic anaerobic treatment. The results showed that psychrophilic treatment at 15 ℃ was feasible for LCFA-containing dairy wastewater, with high removal rates of soluble COD (>90%) and LCFA (∼100%).

View Article and Find Full Text PDF

Microbial chain elongation has emerged as a valuable bioprocess for obtaining marketable products, such as medium chain fatty acids usable in several industrial applications, from organic waste. The understanding of the microbiology and microbial ecology in these systems is crucial to apply these microbiomes in reliable production processes controlling microbial pathways to promote favourable metabolic processes, which will in turn increase product specificity and yields. In this research, the dynamics, cooperation/competition and potentialities of bacterial communities involved in the long-term lactate-based chain elongation process from food waste extract were evaluated under different operating conditions by DNA/RNA amplicon sequencing and functional profile prediction.

View Article and Find Full Text PDF
Article Synopsis
  • The European Green Deal aims to promote sustainable practices, with new technologies and renewable resources being critical for advancing a bio-based economy, including converting food waste into valuable products like carboxylic acids through fermentation.
  • This study focuses on producing caproate from organic-rich food waste extract using an in situ electron donor, achieving significant yields of volatile fatty acids and a maximum caproate concentration of 8 g/L under optimal conditions.
  • However, increasing the organic loading rate (OLR) to 20 gCOD Ld inhibited the chain elongation process due to high caproate concentrations, but the system recovered its functionality after a brief pause in feeding, indicating a resilient microbiome's ability
View Article and Find Full Text PDF

The amount of sewage sludge generated from wastewater treatment plants globally is unavoidably increasing. In recent years, significant attention has been paid to the biorefinery concept based on the conversion of waste streams to high-value products, material, and energy by microorganisms. However, one of the most significant challenges in the field is the possibility of controlling the microorganisms' pathways in the anaerobic environment.

View Article and Find Full Text PDF

Quorum sensing signals regulate various functions within activated sludge processes such as formation of microbial aggregates. Disturbance of this signaling system, known as quorum quenching (QQ), provides opportunities for eliminating some problems related to biological wastewater treatment (e.g.

View Article and Find Full Text PDF

Thermophilic bacteria have recently attracted great attention because of their potential application in improving different biochemical processes such as anaerobic digestion of various substrates, wastewater treatment or hydrogen production. In this study we report on the design of a specific 16S rRNA-targeted oligonucleotide probe for detecting members of Coprothermobacter genus characterized by a strong protease activity to degrade proteins and peptides. The newly designed CTH485 probe and helper probes hCTH429 and hCTH439 were optimized for use in fluorescence in situ hybridization (FISH) on thermophilic anaerobic sludge samples.

View Article and Find Full Text PDF

The enhancement of primary treatment efficiency through the coagulation process may yield several advantages, including lower aeration energy in the subsequent biological unit and higher recovery of biogas from sludge digestion. In this work sewage coagulation with lime was studied at pilot plant level, using degritted sewage from the city of Rome. The work aimed at optimising the operating conditions (coagulant dosage or treatment pH, and mixing conditions in the coagulation and flocculation tanks), in order to maximise the efficiency of suspended Chemical Oxygen Demand (COD) removal and to minimise sludge production.

View Article and Find Full Text PDF