Publications by authors named "Calvin D Brooks"

Nanoparticle-based drug delivery systems offer a promising approach for overcoming the challenges of ocular drug delivery. Our study evaluated the biodistribution and potential targeting of reconstituted high-density lipoprotein nanoparticles (rHDL NPs) loaded with near-infrared dye IR780 to retinal ganglion cells (RGCs) and optic nerve head astrocytes (ONHAs) as a model for neuroprotective drug delivery in glaucoma. A stable rHDL-payload complex was formulated using IR780, phosphatidylcholine, and apolipoprotein A-I (Apo A-I) by using a novel preparation method.

View Article and Find Full Text PDF

Psychedelics are well known for their ability to produce profoundly altered states of consciousness. But, more importantly, the effects of psychedelics can influence neurobehavioral changes that last well after these acute subjective effects end. This phenomenon is currently being leveraged in the development of psychedelic-assisted psychotherapies for the treatment of multiple neuropsychiatric disorders.

View Article and Find Full Text PDF

Glaucoma is a heterogenous group of optic neuropathies characterized by the degeneration of optic nerve axons and the progressive loss of retinal ganglion cells (RGCs), which could ultimately lead to vision loss. Elevated intraocular pressure (IOP) is a major risk factor in the development of glaucoma, and reducing IOP remains the main therapeutic strategy. Endothelin-1 (ET-1), a potent vasoactive peptide, has been shown to produce neurodegenerative effects in animal models of glaucoma.

View Article and Find Full Text PDF

Large retrospective cohort studies have consistently shown that people who exercise regularly are at a markedly reduced risk of dementias such as Alzheimer's Disease (AD). Animal studies have also found that exercise can prevent cognitive decline, and recent studies have identified possible mechanisms. However, randomized controlled trials of exercise interventions in AD and mild cognitive impairment have not reached a consensus regarding the efficacy of this treatment, hampering clinical adoption of this technique.

View Article and Find Full Text PDF

Neurons in the central nervous system are among the most metabolically active cells in the body, characterized by high oxygen consumption utilizing glucose both aerobically and anaerobically. Neurons have an abundance of mitochondria which generate adequate ATP to keep up with the high metabolic demand. One consequence of the oxidative phosphorylation mechanism of ATP synthesis, is the generation of reactive oxygen species which produces cellular injury as well as damage to mitochondria.

View Article and Find Full Text PDF

Despite extensive research and a plethora of therapeutic options, hypertension continues to be a global burden. Understanding of the pathological roles of known and underexplored cellular and molecular pathways in the development and maintenance of hypertension is critical to advance the field. Immune system overactivation and inflammation in the kidneys are proposed alternative mechanisms of hypertension, and resistant hypertension.

View Article and Find Full Text PDF