Publications by authors named "Callan O'Connor"

Red blood cells (RBCs) transport oxygen but accumulate oxidative damage over time, reducing function in vivo and during storage-critical for transfusions. To explore genetic influences on RBC resilience, we profiled proteins, metabolites, and lipids from fresh and stored RBCs obtained from 350 genetically diverse mice. Our analysis identified over 6,000 quantitative trait loci (QTL).

View Article and Find Full Text PDF

The health risks that arise from environmental exposures vary widely within and across human populations, and these differences are largely determined by genetic variation and gene-by-environment (gene-environment) interactions. However, risk assessment in laboratory mice typically involves isogenic strains and therefore, does not account for these known genetic effects. In this context, genetically heterogenous cell lines from laboratory mice are promising tools for population-based screening because they provide a way to introduce genetic variation in risk assessment without increasing animal use.

View Article and Find Full Text PDF

Genetically heterogenous cell lines from laboratory mice are promising tools for population-based screening as they offer power for genetic mapping, and potentially, predictive value for experimentation in genetically matched individuals. To explore this further, we derived a panel of fibroblast lines from a genetic reference population of laboratory mice (the Diversity Outbred, DO). We then used high-content imaging to capture hundreds of cell morphology traits in cells exposed to the oxidative stress-inducing arsenic metabolite monomethylarsonous acid (MMA).

View Article and Find Full Text PDF

Interrogation of disease-relevant cellular and molecular traits exhibited by genetically diverse cell populations enables in vitro systems genetics approaches for uncovering the basic properties of cellular function and identity. Primary cells, stem cells, and organoids derived from genetically diverse mouse strains, such as Collaborative Cross and Diversity Outbred populations, offer the opportunity for parallel in vitro/in vivo screening. These panels provide genetic resolution for variant discovery and functional characterization, as well as disease modeling and in vivo validation capabilities.

View Article and Find Full Text PDF

Mouse embryonic stem cells (mESCs) cultured in the presence of LIF occupy a ground state with highly active pluripotency-associated transcriptional and epigenetic circuitry. However, ground state pluripotency in some inbred strain backgrounds is unstable in the absence of ERK1/2 and GSK3 inhibition. Using an unbiased genetic approach, we dissect the basis of this divergent response to extracellular cues by profiling gene expression and chromatin accessibility in 170 genetically heterogeneous mESCs.

View Article and Find Full Text PDF