There is limited research on the influence of environmental variables on the interactions of biodegradable microplastics with chromium. This study reports the results of adsorption experiments with Cr and poly(lactic acid) (PLA) in synthetic aqueous solutions. It addresses the influence of the initial oxidation state, Cr(III) or Cr(VI), the effects of UV irradiation and the presence of organic matter.
View Article and Find Full Text PDFEnviron Sci Technol
December 2023
Marine dissolved organic matter (DOM) presents key thermodynamic properties that are not yet fully constrained. Here, we report the distribution of binding sites occupied by protons (i.e.
View Article and Find Full Text PDFSci Total Environ
January 2024
Microplastics and natural organic matter are present in the aquatic environment and their reciprocal interaction plays important roles in the transport and behavior of nutrients and contaminants. Nevertheless, we lack mechanistic understanding on these interactions, especially in the case of biodegradable plastics. Here we investigate the adsorption of a commercial humic acid onto poly (lactic acid) (PLA) microplastics in aqueous solution.
View Article and Find Full Text PDFEnviron Sci Technol
December 2021
The physicochemical characteristics of dissolved organic matter (DOM) strongly influence its interactions with inorganic species such as protons and trace elements in natural waters. We collected water samples at Boknis Eck, a time series station in the Baltic Sea with a low exposure to freshwater inputs, to investigate how seasonal fluctuations impact the proton binding properties of the isolated DOM. We used potentiometric titrations to assess the binding properties of solid-phase extracted DOM (SPE-DOM) over a seasonal cycle.
View Article and Find Full Text PDFSci Total Environ
August 2020
Marine dissolved organic matter (DOM) plays a key role in the current and future global carbon cycle, which supports life on Earth. Trace metals such as iron, an essential micronutrient, compete with protons and major ions for the binding to DOM. These competitive effects and the DOM binding capacity are related to the DOM acid-base properties, which also influence DOM transport and reactivity in marine waters.
View Article and Find Full Text PDFThe variation over time of free Zn ion concentration in stirred dispersions of ZnO nanoparticles (ZnO NPs) prepared in synthetic saliva at pH 6.80 and 37 °C was followed in situ (without solid-liquid separation step) with the electroanalytical technique AGNES (Absence of Gradients and Nernstian Equilibrium Stripping). Under these conditions, ZnO NPs are chemically unstable due to their reaction with phosphates.
View Article and Find Full Text PDFNanotoxicology
December 2016
Solubility is an important physicochemical parameter in nanoregulation. If nanomaterial is completely soluble, then from a risk assessment point of view, its disposal can be treated much in the same way as "ordinary" chemicals, which will simplify testing and characterisation regimes. This review assesses potential techniques for the measurement of nanomaterial solubility and evaluates the performance against a set of analytical criteria (based on satisfying the requirements as governed by the cosmetic regulation as well as the need to quantify the concentration of free (hydrated) ions).
View Article and Find Full Text PDFAs the measurement of metals by DGT (diffusion gradients in thin films) in low salinity media has been controversial, a thorough study of the impact of ionic strength (I) is timely. DGT accumulations of Cd, Co, and Ni in the presence of NTA at pH 7.5 with I in the range from 10(-4) to 0.
View Article and Find Full Text PDFZnO nanoparticles (NPs) are prone to dissolution, and uncertainty remains whether biological/cellular responses to ZnO NPs are solely due to the release of Zn(2+) or whether the NPs themselves have additional toxic effects. We address this by establishing ZnO NP solubility in dispersion media (Dulbecco's modified Eagle's medium, DMEM) held under conditions identical to those employed for cell culture (37 °C, 5% CO2, and pH 7.68) and by systematic comparison of cell-NP interaction for three different ZnO NP preparations.
View Article and Find Full Text PDFThis work reports experimental evidences, not previously considered, to evaluate the Cr(VI) removal by protonated banana skin biomass. Variations in the number of hydroxyl groups, quantified by potentiometric titrations, and CO2 evolution during experiments, were attributed mainly to the oxidation of hydroxylic entities present in the studied material. The results indicate that these groups together with the carboxylic moieties are the main functionalities involved on the adsorption-coupled reduction process.
View Article and Find Full Text PDFIn this paper, we present a computer simulation study of the ion binding process at an ionizable surface using a semi-grand canonical Monte Carlo method that models the surface as a discrete distribution of charged and neutral functional groups in equilibrium with explicit ions modelled in the context of the primitive model. The parameters of the simulation model were tuned and checked by comparison with experimental titrations of carboxylated latex particles in the presence of different ionic strengths of monovalent ions. The titration of these particles was analysed by calculating the degree of dissociation of the latex functional groups vs.
View Article and Find Full Text PDFIn this work kinetic and equilibrium studies related to copper binding to the protonated macroalga Sargassum muticum are reported. An intraparticle-diffusion linear driving force (LDF) model has been chosen for the quantitative description of the kinetics at several initial metal concentrations. Copper intraparticle homogeneous diffusion coefficient (D(h)) obtained is in the range 0.
View Article and Find Full Text PDFThe binding of ions or other small molecules to macromolecules and surfaces can be macroscopically characterized by means of the stepwise (or stoichiometric) equilibrium constants, which can be obtained experimentally from coverage versus concentration data. The present work presents a novel, simple, and direct interpretation of the stepwise constants in terms of the microscopic, site-specific, stability constants. This formalism can be applied to the most general case, including the heterogeneity of the sites, interactions among them, multicomponent adsorption, and so forth, and, in particular, to chelate complexation.
View Article and Find Full Text PDFEnviron Sci Technol
October 2009
The effective distribution of affinities (Conditional Affinity Spectrum, CAS) seen by a metal ion binding to a humic substance under natural water conditions is derived and discussed within the NICA-Donnan model. Analytical expressions for the average affinity of these distributions in general multi-ion mixtures are reported here for the first time. These expressions enable a simple evaluation of the effect of all interfering cations on the affinity distribution of a given one.
View Article and Find Full Text PDFStepwise constants can be used to describe competitive proton and metal binding to macromolecules with a large number of sites. With the aim of accessing information on the microscopic binding model, we report an expression that connects the stepwise constants to the site-specific metal constants. This expression holds for a very general complexation model including heterogeneity, interactions, and chelate complexation.
View Article and Find Full Text PDFThis work presents a new methodology aimed at obtaining the stepwise stability constants corresponding to the binding of ions (or other small molecules) to macromolecular ligands having a large number of sites. For complexing agents with a large number of sites, very simple expressions for the stepwise stability constants arise. Such expressions are model-independent; that is, they allow the determination of the stepwise stability constants without making any previous assumption of the detailed complexation mechanism.
View Article and Find Full Text PDF