Conducting disentanglement learning on single-cell omics data offers a promising alternative to traditional black-box representation learning by separating the semantic concepts embedded in a biological process. We present CausCell, which incorporates the factual information about causal relationships among disentangled concepts within a diffusion model to generate more reliable disentangled cellular representations, with the aim of increasing the explainability, generalizability and controllability of single-cell data, including spatial-temporal omics data, relative to those of the existing black-box representation learning models. Two quantitative evaluation scenarios, i.
View Article and Find Full Text PDFNPJ Parkinsons Dis
December 2024
Parkinson's disease (PD) is a complex neurological disorder characterized by dopaminergic neuron degeneration, leading to diverse motor and non-motor impairments. This variability complicates accurate progression modelling and early-stage prediction. Traditional classification methods based on clinical symptoms are often limited by disease heterogeneity.
View Article and Find Full Text PDFDue to low success rates and long cycles of traditional drug development, the clinical tendency is to apply omics techniques to reveal patient-level disease characteristics and individualized responses to treatment. However, the heterogeneous form of data and uneven distribution of targets make drug discovery and precision medicine a non-trivial task. This study takes pyroptosis therapy for triple-negative breast cancer (TNBC) as a paradigm and uses data mining of a large TNBC cohort and drug databases to establish a biofactor-regulated neural network for rapidly screening and optimizing compound pyroptosis drug pairs.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
December 2024
The conventional approach to image recognition has been based on raster graphics, which can suffer from aliasing and information loss when scaled up or down. In this paper, we propose a novel approach that leverages the benefits of vector graphics for object localization and classification. Our method, called YOLaT (You Only Look at Text), takes the textual document of vector graphics as input, rather than rendering it into pixels.
View Article and Find Full Text PDF