Publications by authors named "Brian D Nguyen"

TURBOMOLE is a highly optimized software suite for large-scale quantum-chemical and materials science simulations of molecules, clusters, extended systems, and periodic solids. TURBOMOLE uses Gaussian basis sets and has been designed with robust and fast quantum-chemical applications in mind, ranging from homogeneous and heterogeneous catalysis to inorganic and organic chemistry and various types of spectroscopy, light-matter interactions, and biochemistry. This Perspective briefly surveys TURBOMOLE's functionality and highlights recent developments that have taken place between 2020 and 2023, comprising new electronic structure methods for molecules and solids, previously unavailable molecular properties, embedding, and molecular dynamics approaches.

View Article and Find Full Text PDF

This Perspective reviews recent efforts toward selfconsistent calculations of ground-state energies within the random phase approximation (RPA) in the (generalized) Kohn-Sham (KS) density functional theory context. Since the RPA correlation energy explicitly depends on the non-interacting KS potential, an additional condition to determine the energy as a functional of the density is necessary. This observation leads to the concept of functional selfconsistency (FSC), which requires that the KS density equals the interacting density defined as the functional derivative of the ground-state energy with respect to the external potential.

View Article and Find Full Text PDF

We report the synthesis and characterization of the trinuclear 4d-4f compounds [Co(CMe)][(CMe)Ln(μ-S)Mo(μ-S)Ln(CMe)], (Ln = Y, Gd, Tb, Dy), containing the highly polarizable MoS bridging unit. UV-Vis-NIR diffuse reflectance spectra and DFT calculations of reveal a low-energy metal-to-metal charge transfer transition assigned to charge transfer from the singly occupied 4d orbital of Mo to the empty 5d orbitals of the lanthanides (4d in the case of ), mediated by sulfur-based 3p orbitals. Electron paramagnetic resonance spectra collected for in a tetrahydrofuran solution show large Y hyperfine coupling constants of = 23 MHz and = 26 MHz, indicating the presence of significant yttrium-localized unpaired electron density.

View Article and Find Full Text PDF

TURBOMOLE is a collaborative, multi-national software development project aiming to provide highly efficient and stable computational tools for quantum chemical simulations of molecules, clusters, periodic systems, and solutions. The TURBOMOLE software suite is optimized for widely available, inexpensive, and resource-efficient hardware such as multi-core workstations and small computer clusters. TURBOMOLE specializes in electronic structure methods with outstanding accuracy-cost ratio, such as density functional theory including local hybrids and the random phase approximation (RPA), GW-Bethe-Salpeter methods, second-order Møller-Plesset theory, and explicitly correlated coupled-cluster methods.

View Article and Find Full Text PDF

Prompted by recent reports of large errors in noncovalent interaction (NI) energies obtained from many-body perturbation theory (MBPT), we compare the performance of second-order Mo̷ller-Plesset MBPT (MP2), spin-scaled MP2, dispersion-corrected semilocal density functional approximations (DFAs), and post-Kohn-Sham random phase approximation (RPA) for predicting binding energies of supramolecular complexes contained in the S66, L7, and S30L benchmarks. All binding energies are extrapolated to the basis set limit, corrected for basis set superposition errors, and compared to reference results of the domain-based local pair-natural orbital coupled-cluster (DLPNO-CCSD(T)) or better quality. Our results confirm that MP2 severely overestimates binding energies of large complexes, producing relative errors of over 100% for several benchmark compounds.

View Article and Find Full Text PDF

Leishmania major peroxidase (LmP) is structurally and functionally similar to the well-studied yeast Cytochrome c peroxidase (CCP). A recent Brownian dynamics study showed that L. major Cytochrome c (LmCytc) associates with LmP by forming an initial complex with the N-terminal helix A of LmP, followed by a movement toward the electron transfer (ET) site observed in the LmP-LmCytc crystal structure.

View Article and Find Full Text PDF

We report a set of brominated luciferins for bioluminescence imaging. These regioisomeric scaffolds were accessed by using a common synthetic route. All analogues produced light with firefly luciferase, although varying levels of emission were observed.

View Article and Find Full Text PDF

The heme iron of cytochromes P450 must be reduced to bind and activate molecular oxygen for substrate oxidation. Reducing equivalents are derived from a redox partner, which requires the formation of a protein-protein complex. A subject of increasing discussion is the role that redox partner binding plays, if any, in favoring significant structural changes in the P450s that are required for activity.

View Article and Find Full Text PDF

We formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remain small.

View Article and Find Full Text PDF

The purpose of this study was to observe the effects of the 1-minute anaerobic step test on lactate production. In addition, a comparison of postexercise lactate levels between the traditional 40-cm step height and a modified 20-cm step height was tested along with multiple biomechanical components such as torque, knee angle, and power. A convenience sample of 9 healthy moderately trained individuals were recruited for this experiment.

View Article and Find Full Text PDF