Publications by authors named "Brian Czaya"

Anemia is a common and disabling complication of chronic kidney disease (CKD). Current therapies can be burdensome, and full correction of anemia is limited by cardiovascular side effects. New approaches that may offer additional therapeutic options are needed.

View Article and Find Full Text PDF

Anemia is a common and disabling complication of chronic kidney disease (CKD). Current therapies can be burdensome, and full correction of anemia is limited by cardiovascular side effects. New approaches that may offer additional therapeutic options are needed.

View Article and Find Full Text PDF

Fibroblast growth factor (FGF) 23 is a bone-derived hormone that promotes renal phosphate excretion. Serum FGF23 is increased in chronic kidney disease (CKD) and contributes to pathologic cardiac hypertrophy by activating FGF receptor (FGFR) 4 on cardiac myocytes, which might lead to the high cardiovascular mortality in CKD patients. Increases in serum FGF23 levels have also been observed following endurance exercise and in pregnancy, which are scenarios of physiologic cardiac hypertrophy as an adaptive response of the heart to increased demand.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic kidney disease (CKD) leads to various health issues, including high phosphate levels (hyperphosphatemia), which can harm blood vessels and cause muscle atrophy.
  • In experiments with mice, those with CKD or high phosphate diets showed reduced muscle mass and function, confirming that hyperphosphatemia is linked to muscle damage.
  • Direct exposure to high phosphate levels in cultured muscle cells also resulted in muscle atrophy, indicating that high phosphate can independently contribute to muscle injury, particularly in the context of CKD.
View Article and Find Full Text PDF

An elevation in serum phosphate-also called hyperphosphatemia-is associated with reduced kidney function in chronic kidney disease (CKD). Reports show CKD patients are more likely to develop lung disease and have poorer kidney function that positively correlates with pulmonary obstruction. However, the underlying mechanisms are not well understood.

View Article and Find Full Text PDF

Fibroblast growth factor (FGF) 21, a hormone that increases insulin sensitivity, has shown promise as a therapeutic agent to improve metabolic dysregulation. Here we report that FGF21 directly targets cardiac myocytes by binding β-klotho and FGF receptor (FGFR) 4. In combination with high glucose, FGF21 induces cardiac myocyte growth in width mediated by extracellular signal-regulated kinase 1/2 (ERK1/2) signaling.

View Article and Find Full Text PDF

Fibroblast growth factor (FGF) 23 is a phosphate-regulating hormone that is elevated in patients with chronic kidney disease and associated with cardiovascular mortality. Experimental studies showed that elevated FGF23 levels induce cardiac hypertrophy by targeting cardiac myocytes via FGF receptor isoform 4 (FGFR4). A recent structural analysis revealed that the complex of FGF23 and FGFR1, the physiologic FGF23 receptor in the kidney, includes soluble α-klotho (klotho) and heparin, which both act as co-factors for FGF23/FGFR1 signaling.

View Article and Find Full Text PDF

In chronic kidney disease, ferric citrate has been shown to be an effective phosphate binder and source of enteral iron; however, the effects of ferric citrate on the kidney have been less well-studied. Here, in Col4α3 knockout mice-a murine model of progressive chronic kidney disease, we evaluated the effects of five weeks of 1% ferric citrate dietary supplementation. As expected, ferric citrate lowered serum phosphate concentrations and increased serum iron levels in the Col4α3 knockout mice.

View Article and Find Full Text PDF

Elevations in plasma phosphate concentrations (hyperphosphatemia) occur in chronic kidney disease (CKD), in certain genetic disorders, and following the intake of a phosphate-rich diet. Whether hyperphosphatemia and/or associated changes in metabolic regulators, including elevations of fibroblast growth factor 23 (FGF23) directly contribute to specific complications of CKD is uncertain. Here, we report that similar to patients with CKD, mice with adenine-induced CKD develop inflammation, anemia, and skeletal muscle wasting.

View Article and Find Full Text PDF

Chronic illnesses rarely present in a vacuum, devoid of other complications, and chronic kidney disease is hardly an exception. Comorbidities associated with chronic kidney disease lead to faster disease progression, expedited dialysis dependency, and a higher mortality rate. Although chronic kidney disease is most commonly accompanied by cardiovascular diseases and diabetes, there is clear cross talk between the lungs and kidneys pH balance, phosphate metabolism, and immune system regulation.

View Article and Find Full Text PDF

Ferric citrate is approved as an iron replacement product in patients with non-dialysis chronic kidney disease and iron deficiency anemia. Ferric citrate-delivered iron is enterally absorbed, but the specific mechanisms involved have not been evaluated, including the possibilities of conventional, transcellular ferroportin-mediated absorption and/or citrate-mediated paracellular absorption. Here, we first demonstrate the efficacy of ferric citrate in high hepcidin models, including Tmprss6 knockout mice (characterized by iron-refractory iron deficiency anemia) with and without adenine diet-induced chronic kidney disease.

View Article and Find Full Text PDF

High serum concentrations of the phosphaturic hormone, fibroblast growth factor 23 (FGF23), contribute to various tissue injuries. In chronic kidney disease, the sources of FGF23 and the stimuli that control FGF23 production differ from those in the physiologic scenario. Mediators of inflammation are intensively studied as potential factors that contribute to FGF23 elevations and thereby might function as drug targets to lower FGF23 levels.

View Article and Find Full Text PDF

In patients with chronic kidney disease (CKD), adverse outcomes such as systemic inflammation and anemia are contributing pathologies which increase the risks for cardiovascular mortality. Amongst these complications, abnormalities in mineral metabolism and the metabolic milieu are associated with chronic inflammation and iron dysregulation, and fibroblast growth factor 23 (FGF23) is a risk factor in this context. FGF23 is a bone-derived hormone that is essential for regulating vitamin D and phosphate homeostasis.

View Article and Find Full Text PDF

Background: In uremic animals, vitamin D receptor (VDR) agonists like paricalcitol (Pc) attenuate cardiac hypertrophy, but this effect has not been replicated consistently in humans with chronic kidney disease. Elevated fibroblast growth factor 23 (FGF23) levels cause cardiac hypertrophy with activation of the myocardial calcineurin/nuclear factor of activated T cell (NFAT) axis and may antagonize the cardioprotective effects of VDR agonist therapy. We hypothesized that the effectiveness of Pc may depend on the prevailing circulating levels of FGF23 and could be potentiated by the combined administration of a pan-FGF23 receptor (FGFR) blocker agent (PD173074).

View Article and Find Full Text PDF

Fibroblast growth factor (FGF) 23 is a phosphaturic hormone that directly targets cardiac myocytes via FGF receptor (FGFR) 4 thereby inducing hypertrophic myocyte growth and the development of left ventricular hypertrophy (LVH) in rodents. Serum FGF23 levels are highly elevated in patients with chronic kidney disease (CKD), and it is likely that FGF23 directly contributes to the high rates of LVH and cardiac death in CKD. It is currently unknown if the cardiac effects of FGF23 are solely pathological, or if they potentially can be reversed.

View Article and Find Full Text PDF

The liver plays a decisive role in the regulation of systemic inflammation. In chronic kidney disease in particular, the liver reacts in response to the uremic milieu, oxidative stress, endotoxemia and the decreased clearance of circulating proinflammatory cytokines by producing a large number of acute-phase reactants. Experimental tools to study inflammation and the underlying role of hepatocytes are crucial to understand the regulation and contribution of hepatic cytokines to a systemic acute phase response and a prolonged pro-inflammatory scenario, especially in an intricate setting such as chronic kidney disease.

View Article and Find Full Text PDF

Patients with chronic kidney disease (CKD) develop increased levels of the phosphate-regulating hormone, fibroblast growth factor (FGF) 23, that are associated with a higher risk of mortality. Increases in inflammatory markers are another common feature that predicts poor clinical outcomes. Elevated FGF23 is associated with higher circulating levels of inflammatory cytokines in CKD, which can stimulate osteocyte production of FGF23.

View Article and Find Full Text PDF