Neurobiological research relies heavily on imaging techniques, such as fluorescence microscopy, to understand neurological function and disease processes. However, the number and variety of fluorescent probes available for tissue section imaging limits the advance of research in the field. In this review, we outline the current range of fluorescent probes that are available to researchers for brain section imaging, including their physical and chemical characteristics, staining targets, and examples of discoveries for which they have been used.
View Article and Find Full Text PDFChem Commun (Camb)
August 2024
Imaging with multiple modalities can maximise the information gained from the analysis of a single sample. probes for optical fluorescence and X-ray fluorescence microscopy based on brominated 4-amino-1,8-naphthalimide and BODIPY scaffolds have been successfully designed and synthesised. Herein we show that these prototype probes, based on each of these scaffolds, can be imaged in two different cancer cell lines, and that the respective optical fluorescence and X-ray fluorescence signals are well correlated in these images.
View Article and Find Full Text PDFFluorescence microscopy is a key tool in the biological sciences, which finds use as a routine laboratory technique (e.g., epifluorescence microscope) or more advanced confocal, two-photon, and super-resolution applications.
View Article and Find Full Text PDFThe effect of halogen substitution in fluorescent BODIPY species was evaluated in the context of staining lipids in situ within brain tissue sections. Herein we demonstrate that the halogenated species maintain their known in vitro affinity when applied to detect lipids in situ in brain tissue sections. Interestingly, the chlorine substituted compound revealed the highest specificify for white matter lipids.
View Article and Find Full Text PDFThe synthesis, structural and photophysical characterisation of four tricarbonyl rhenium(i) complexes bound to 1,10-phenanthroline and a tetrazolato ancillary ligand are reported. The complexes are differentiated by the nature (hydroxy or methoxy) and position (meta or para) of the substituent attached to the phenyl ring in conjugation to the tetrazole ring. The complexes exhibit phosphorescence emission from triplet charge transfer excited states, with the maxima around 600 nm, excited state lifetime decays in the 200-300 ns range, and quantum yield values of 4-6% in degassed acetonitrile solutions.
View Article and Find Full Text PDF