Genes act in concert with each other in specific contexts to perform their functions. Determining how these genes influence complex traits requires a mechanistic understanding of expression regulation across different conditions. It has been shown that this insight is critical for developing new therapies.
View Article and Find Full Text PDFBackground: Hetnets, short for "heterogeneous networks," contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such example, Hetionet, connects 11 types of nodes-including genes, diseases, drugs, pathways, and anatomical structures-with over 2 million edges of 24 types. Previous work has demonstrated that supervised machine learning methods applied to such networks can identify drug repurposing opportunities.
View Article and Find Full Text PDFHetnets, short for "heterogeneous networks", contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such example, Hetionet connects 11 types of nodes - including genes, diseases, drugs, pathways, and anatomical structures - with over 2 million edges of 24 types. Previous work has demonstrated that supervised machine learning methods applied to such networks can identify drug repurposing opportunities.
View Article and Find Full Text PDFProc 2021 SIAM Conf Appl Comput Discret Algorithms (2021)
January 2021
We present a new combinatorial model for identifying regulatory modules in gene co-expression data using a decomposition into weighted cliques. To capture complex interaction effects, we generalize the previously-studied weighted edge clique partition problem. As a first step, we restrict ourselves to the noise-free setting, and show that the problem is fixed parameter tractable when parameterized by the number of modules (cliques).
View Article and Find Full Text PDFGenomes computationally inferred from large metagenomic data sets are often incomplete and may be missing functionally important content and strain variation. We introduce an information retrieval system for large metagenomic data sets that exploits the sparsity of DNA assembly graphs to efficiently extract subgraphs surrounding an inferred genome. We apply this system to recover missing content from genome bins and show that substantial genomic sequence variation is present in a real metagenome.
View Article and Find Full Text PDFTensor networks are powerful factorization techniques which reduce resource requirements for numerically simulating principal quantum many-body systems and algorithms. The computational complexity of a tensor network simulation depends on the tensor ranks and the order in which they are contracted. Unfortunately, computing optimal contraction sequences (orderings) in general is known to be a computationally difficult (NP-complete) task.
View Article and Find Full Text PDF